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Abstract—The methodology for finding the same individual in a network of cameras must deal with significant changes in appearance
caused by variations in illumination, viewing angle and a person’s pose. Re-identification requires solving two fundamental problems:
(1) determining a distance measure between features extracted from different cameras that copes with illumination changes (metric
learning); and (2) ensuring that matched features refer to the same body part (correspondence). Most metric learning approaches
focus on finding a robust distance measure between bounding box images, neglecting the alignment aspects. In this paper, we propose
to learn appearance measures for patches that are combined using deformable models. Learning metrics for patches avoids strong
dimensionality reduction, thus keeping more information. Additionally, we allow patches to change their locations, directly addressing
the correspondence problem. As patches from different locations may share the same metric, our method effectively multiplies the
amount of training data and allows patch metrics to be learned on the smaller amounts of labeled images. Different metric learning
approaches (KISSME, XQDA, LSSL) together with different deformable models (spring constraints, one-to-one matching constraints)
are investigated and compared. For describing patches, we propose to learn a deep feature representation with Convolutional Neural
Networks (CNNs), thus obtaining highly effective features for re-identification. We demonstrate that our approach significantly
outperforms state-of-the-art methods on multiple datasets.

Index Terms—metric learning, deformable models.
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1 INTRODUCTION

P ERSON RE-IDENTIFICATION is the problem of recognizing
the same individual across a network of cameras. In a real-

world scenario, the transition time between cameras may signifi-
cantly decrease the search space, but temporal information alone
is not usually sufficient to solve the problem. As a result, visual
appearance models have received a lot attention in computer vision
research [5], [25], [26], [29], [30], [41], [47]. The underlying
challenge for visual appearance is that the models must work
under significant appearance changes caused by variations in
illumination, viewing angle and a person’s pose.

Metric learning approaches often achieve the best performance
in re-identification. These methods learn a distance function be-
tween features from different cameras such that relevant dimen-
sions are emphasized while irrelevant ones are ignored. Many
metric learning approaches [10], [19], [24] divide a bounding
box pedestrian image into a fixed grid of regions and extract
descriptors which are then concatenated into a high-dimensional
feature vector. Afterwards, dimensionality reduction is applied,
and then metric learning is performed on the reduced subspace
of differences between feature vectors. To avoid overfitting, the
dimensionality must be significantly reduced. In practice, the sub-
space dimensionality is about three orders of magnitude smaller
than the original. Such strong dimensionality reduction might
result in the loss of discriminative information. Additionally,
features extracted on a fixed grid (see Fig. 1), may not correspond
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Fig. 1: Full bounding box metric learning vs. deformable patch
metric learning (DPML). The corresponding patches in the grid
(highlighted in red) do not correspond to the same body part
because of the pose change. Information from such misaligned
features might be lost during the metric learning step. Instead, our
DPML deforms to maximize similarity using metrics learned on a
patch level.

even though it is the same person (e.g. due to a pose change).
Metric learning is unable to recover this lost information.

In this paper, instead of learning a metric for concatenated
features extracted from full bounding boxes from different cam-
eras, we propose to learn metrics for 2D patches. Learning
metrics for patches is less prone to overfitting (because of lower
dimensionality) and it requires less compression. As a result it
keeps more information.

Furthermore, we do not assume the patches must be located on
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a fixed grid. Our model allows patches to perturb their locations
when computing similarity between two images (see Fig. 1). This
model is inspired from part-based object detection [12], [43],
which decomposes the appearance model into local templates with
geometric constraints (conceptualized as springs).

Our main contributions are:

• We propose to learn metrics locally, on feature vectors
extracted from patches. These metrics can be combined
into a unified distance measure.

• We introduce two deformable patch-based models for
accommodating pose changes and occlusions: (1) an un-
supervised deformable model that introduces a global one-
to-one matching constraint solved by a linear assignment
problem, and (2) a supervised deformable model that
combines an appearance term with a deformation cost that
controls relative placement of patches.

• For describing patches, we propose to learn a deep fea-
ture representation with Convolutional Neural Networks
(CNNs). The CNN is learned through challenging multi-
class identification task. We force the CNN to recognize
not only the person identity from which the patch has
been extracted but also the patch location. This results
in highly effective representation, significantly improving
the re-identification accuracy.

Our experiments illustrate the merits of patch-based techniques
and achieve new state-of-the-art performance on multiple datasets
outperforming existing approaches by large margins.

2 RELATED WORK

Person re-identification approaches can be divided into two
groups: feature modeling [4], [11] designs descriptors (usually
handcrafted) which are robust to changes in imaging conditions,
and metric learning [1], [10], [19], [23], [24], [42], [50] searches
for effective distance functions to compare features from different
cameras. Robust features can be modeled by adopting perceptual
principles of symmetry and asymmetry of the human body [11].
The correspondence problem can be approached by locating body
parts [4], [8] and extracting local descriptors (color histograms
[8], color invariants [21], covariances [4], CNN [29]). However, to
find a proper descriptor, we need to look for a trade-off between
its discriminative power and invariance between cameras. This
task can be considered a metric learning problem that maximizes
inter-class variation while minimizing intra-class variation.

Many different machine learning algorithms have been consid-
ered for learning a robust similarity function. Gray et al. employed
Adaboost for feature selection and weighting [14], Prosser et al.
defined the person re-identification as a ranking problem and used
an ensemble of RankSVMs [32]. Recently features learned from
deep convolution neural networks have been investigated [1], [7],
[23], [35], [37], [40], [48].

However, the most common choice for learning a metric
remains the family of Mahalanobis distance functions. These
include Large Margin Nearest Neighbor Learning (LMNN) [39],
Information Theoretic Metric Learning (ITML) [9] and Logistic
Discriminant Metric Learning (LDML) [15]. These methods usu-
ally aim at improving k-nn classification by iteratively adapting
the metric. In contrast to these iterative methods, Köstinger [19]
proposed the KISS metric which uses a statistical inference based
on a likelihood-ratio test of two Gaussian distributions modeling

positive and negative pairwise differences between features. Ow-
ing to its effectiveness and efficiency, the KISS metric is a popular
baseline that has been extended to linear [25], [30] and non-
linear [29], [41] subspace embeddings. Most of these approaches
learn a Mahalanobis distance function for feature vectors extracted
from full bounding box images. Integration of feature learning
directly with metric learning approach has been proposed in [38].
Mahalanbois-like function together with feature representation is
learned with a novel end-to-end framework throughout a triplet
embedding.

Recently, a trend of learning similarity measures for patches
[2], [3], [33], [34], [51] has emerged. Operating on patches allows
to directly address person pose variations and camera viewpoint
changes. Shen et al. [33] learns the correspondence structure that
captures spatial correspondence patterns across camera viewpoints
The correspondence structure is represented by patch-wise match-
ing probabilities learned using a boosting-like approach. Patch-
wise correspondence is also introduced in [34]. First the body is
divided into upper and lower body parts and then clustering trees
are independently constructed to find the patch correspondence.
Zheng et al. [51] shows that introducing the patch-level matching
model based on a sparse representation can help in handling inac-
curate person detectors as well as the large amount of occlusion.

This paper is based on our previous work [2], where we
have proposed to learn dissimilarity functions for patches within
bounding boxes, and then combine their scores into a robust
distance measure. We have shown that our approach has clear
advantages over existing algorithms. In this paper we continue
our analysis by evaluating additional parameters (e.g. size of
patches and their layouts) and by employing novel metric learning
approaches. We also investigate additionally an unsupervised de-
formable model based on one-to-one matching constraint. Finally,
we propose to learn patch features directly from data through
challenging multi-class patch identification task employing the
CNN model [40]. This results in the highly effective representation
that brings significant improvement in the performance. Compared
with state-of-the art methods, our approach yields significantly
higher recognition accuracy.

3 METHOD

Often the dissimilarity Ψ(i, j) between two bounding box images
i and j taken from different cameras is defined as a Mahalanobis
metric. The Mahalanobis metric measures the squared distance be-
tween feature vectors extracted from these bounding box images,
xi and xj

Ψ(i, j) = d2(xi,xj) = (xi − xj)
TM(xi − xj), (1)

where M is a matrix encoding the basis for the comparison. M is
usually learned in two stages: dimensionality reduction is first ap-
plied on xi and xj (e.g. principle component analysis - PCA), and
then metric learning (e.g. KISS metric [19]) is performed on the
reduced subspace. To avoid overfitting, the dimensionality must
be significantly reduced to keep the number of free parameters
low [16], [25]. In practice, xi and xj are high dimensional feature
vectors and their reduced dimensionality is usually about three
orders of magnitude smaller than the original [19], [25], [29].
Such strong dimensionality reduction might lose discriminative
information, especially in case of misaligned features in xi and
xj (e.g. highlighted patches in Fig. 1).
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We propose to learn a metric for matching patches within the
bounding box. We perform dimensionality reduction on features
extracted from each patch. The reduced dimensionality is usually
only one order of magnitude smaller than the original one, thus
keeping more information (see Section 4).

In Section 3.1 we offer a patch-based metric learning. Sec-
tion 3.2 introduces three state-of-the-art Mahalanobis-like metric
learning approaches: KISSME [19], XQDA [25] and LSSL [42].
In Section 3.3, we propose two methods for integrating patch-
metrics into a single similarity measure and in Section 3.4 we
show how to learn a very effective patch representation with
Convolutional Neural Networks.

3.1 Patch-based Metric Learning

We divide bounding box image i into a dense grid with overlap-
ping rectangular patches. From each patch location k, we extract
patch feature vector pk

i . We represent bounding box image i
as an ordered set of patch features Xi = {p1

i ,p
2
i , . . . ,p

K
i },

where K is the number of patches. Usually in standard metric
learning approaches [19], [26], [29], [30], these patch descriptors
are further concatenated into a single high dimensional feature
vector (e.g. xi = [p1

i |p2
i | . . . |pK

i ]) and metric learning together
with dimensionality reduction is then performed. Instead, we
learn a dissimilarity function Φ for feature vectors extracted from
patches. Patch dissimilarities are further combined into a unified
dissimilarity by integration function Z (see Section 3.3). We
define the dissimilarity between two images i and j as

Ψ(i, j) = Zk,l∈1...K

(
Φ(pk

i ,p
l
j ; θ(k))

)
(2)

where pk
i and pl

j are the feature vectors extracted from patches
at locations k and l, respectively, in bounding box images i and
j. Images i and j are assumed to come from different cameras.
Set of parameters θ determines function Φ and it is learned using
a given metric learning approach (see Section 3.2). Notice that
Ψ(i, j) is defined as an asymmetric dissimilarity measure due to
k dependency. If symmetry is a concern, one can redefine the
final dissimilarity as a function of both Ψ(i, j) and Ψ(j, i), e.g.
Ψ′(i, j) = min(Ψ(i, j),Ψ(j, i)).

Although, it is possible to learn one metric for each patch
location k, this might be too many degrees of freedom. In practice,
multiple patch locations might share a common metric, and in the
extreme case a single θ could be learned for all patch locations. We
investigated re-identification performance with different numbers
of patch metrics (see Section 4.2.1) and found that in some cases
multiple metrics might perform better than a single one. Regions
with statistically different amounts of background noise should
have different metrics (e.g. patches close to the head contain
more background noise than patches close to the torso). However,
we also found that the recognition performance is a function of
available training data (see Section 4.2.1), which limits the number
of patch metrics that can be learned efficiently. In the standard
approach, a pair of bounding boxes corresponds to a single training
example. Breaking a bounding box into a set of patches increases
the amount of training data if a reduced number of metrics is
learned (e.g. some locations k share the same metric/parameters
θ). When a single θ is learned, the amount of training data
increases by combining patches for all K locations into a single
set (K× more positive examples for learning a metric compared
to the standard approach). In experiments we show that this can

significantly boost performance when the training dataset is small
(e.g. iLIDS dataset).

3.2 Metric learning (Φ)

Given pairs of sample bounding boxes (i, j) we introduce the
space of pairwise differences pk

ij = pk
i − pk

j and partition the
training data into pk+

ij when i and j are bounding boxes containing
the same person and pk−

ij otherwise. Note that for learning we use
differences on patches from the same location k.

3.2.1 KISS metric learning
Köstinger et al. [19] proposed an effective and efficient way of
learning a Mahalanobis metric by assuming a Gaussian structure
of the difference space (i.e. pk

ij). When employing KISSME our
patch dissimilarity measure becomes

Φ(pk
i ,p

k
j ; θ(k)) = (pk

i − pk
j )TM(k)(pk

i − pk
j ), (3)

thus θ(k) = {M(k)}. To learn M(k) we follow Köstinger [19]
and assume a zero mean Gaussian structure on difference space
and employ a log likelihood ratio test. This results in

M(k) = Σ−1k+ − Σ−1k−, (4)

where Σk+ and Σk− are the covariance matrices of pk+
ij and pk−

ij ,
respectively

Σk+ =
∑

(pk+
ij )(pk+

ij )T , (5)

Σk− =
∑

(pk−
ij )(pk−

ij )T . (6)

Computing Eq. (4) requires inverting two covariance matrices.
In practice, as pk

i ’s are still relatively high dimensional (see
Sec. 4.2.3), Σk+ is often singular, thus Σ−1k+ cannot be computed.
As a result, dimensionality reduction on pk

i is usually applied (e.g.
PCA), which allows to invert Σk+. Keeping the dimensionality
low also avoids overfitting. One can find the optimal number
of principal components using cross-validation techniques. Liao
et al. [25] proposed an alternative solution that simultaneously
learns metric M and low dimensional subspace W, referred to as
XQDA.

3.2.2 XQDA metric learning
Using XQDA [25] the patch dissimilarity can be written as

Φ(pk
i ,p

k
j ; θ(k)) = (pk

i − pk
j )T (W(k))M(k)(W(k))T (pk

i − pk
j ),
(7)

where

M(k) =
(

(W(k))T Σk+(W(k))
)−1
−
(

(W(k))T Σk−(W(k))
)−1

.

(8)

Original feature dimension d of pk
i is reduced by subspace

W(k) ∈ Rd×r . W(k) is learned using the Generalized Rayleigh
Quotient objective, solved by the generalized eigenvalue de-
composition problem similar to LDA [25]. Notice that Σk+ is
computed in the original d-dimensional space, thus its singularity
remains a problem. Liao et al. proposes to add a small regularizer
to the diagonal of elements of Σk+, which is a common trick
in LDA-like problems. This makes the estimation of Σk+ more
smooth and robust. As a result, learning parameters become
θ(k) = {W(k),M(k)}.
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3.2.3 LSSL metric learning
Yang et al. [42] introduced large scale similarity learning (LSSL)
that combines feature difference (pk

ij = pk
i − pk

j ) and com-
monness (qk

ij = pk
i + pk

j ), thus producing more discrimina-
tive measure. The main idea comes from insights found in a
2-dimensional Euclidean space. Consider the `2-normalized 2-
dimensional feature space. Notice that for similar vectors (i and j
containing the same person) pk

ij is expected to be small but qk
ij

should be very large, in contrary for dissimilar vectors (i and j
containing different people) pk

ij is expected to be large and qk
ij

should be relatively small. Therefore, by combining difference and
commonness we can expect more discriminative metric compared
to metric learning methods that only employ differences pk

ij . The
patch dissimilarity measure then becomes

Φ(pk
i ,p

k
j ; θ(k)) = (pk

ij)
TM(k)

p (pk
ij)

T − λ(qk
ij)

TM(k)
q (qk

ij)
T ,
(9)

where both M
(k)
p and M

(k)
q can be inferred analogically to

KISS metric learning [19]. Yang et al. [42] shows further, that
based on a pair-constrained Gaussian assumption, covariance for
pairs containing different people (pk−

ij and qk−
ij ) can be directly

deduced from image pairs containing the same person (for details
see [42]). Parameter λ is used to balance between difference
and commonness of feature vectors. Similarly to [42], we set
λ = 1.5 in all experiments. As a result, learning parameters
become θ(k) = {M(k)

p ,M
(k)
q } and PCA is applied on pk

i to
avoid the covariance singularity problem.

3.3 Integrated dissimilarities for images (Z)
To compute the total dissimilarity between two bounding box
images i and j, we propose several strategies for aggregating met-
rics learned for patches. First, we introduce a rigid model (PML)
to illustrate that learning metric for patches keeps more infor-
mation avoiding strong dimensionality reduction (Section 3.3.1).
Additionally, learning metrics on patch level might effectively
multiply the amount of training data yielding significant boost
in recognition performance for smaller datasets.

Pose changes and different camera viewpoints make re-
identification more difficult as features extracted on a fixed grid
may not correspond even though it is the same person. Break-
ing a bounding box image into patches allows us to introduce
deformable models that can effectively cope with pose changes,
enabling patches in one bounding box to perturb their locations
(deform) when matching to another bounding box. Independently
to metric learning, our task is to find a strategy that can perturb
patch locations to simulate pose changes. We investigate two
deformable models (1) un unsupervised deformable model based
one-to-one matching constraint (HPML) that does not require any
additional training apart of metric learning (Section 3.3.2) and
(2) a supervised deformable model with geometric constraints
(conceptualized as springs) (DPML) that we train by introducing
an optimization problem as a relatvie distance comparison of
triplets (Section 3.3.3).

3.3.1 Rigid model (PML)
We combine patch dissimilarity scores by summing over all
patches

ZPML =
K∑

k=1

Φ(pk
i ,p

k
j ; θ(k)). (10)

Fig. 2: Deformable models: K ×K cost matrix, which is used as
an input to the Hungarian algorithm for finding optimal one-to-
one patch correspondence. The dissimilarity between two patches
becomes ∞ if the distance between their spatial locations η(·, ·)
is greater than assumed threshold δ.

Compared with the standard approach (e.g. in case of KISS
metric), this is equivalent to learning a block diagonal matrix

ZPML =
[
p1
ij ,p

2
ij , . . . ,p

K
ij

]

M1 0 . . . 0
0 M2 . . . 0
...

...
. . . 0

0 0 . . . MK




p1
ij

p2
ij
...

pK
ij


(11)

where all M(k) are learned independently. We refer to this
formulation as PML.

3.3.2 Unsupervised Deformable Model (HPML)

Patch-based methods [2], [34] often allow patches to adjust their
locations when comparing two bounding box images. Sheng et al.
[34] assumed the correspondence structure to be fixed and learned
it using a boosting-like approach. Instead, we define the patch
correspondence task as a linear assignment problem. Given K
patches from bounding box image i and K patches from bounding
box image j we create a K ×K cost matrix that contains patch
similarity scores within a fixed neighborhood (see Fig 2). To avoid
patches freely changing their location, we introduce a global one-
to-one matching constraint and solve a linear assignment problem

Ω∗ij = arg min
Ωij

(
K∑

k=1

Φ(p
Ωij(k)
i ,pk

j ; θ(k)) + ∆
(
Ωij(k), k

))
,

s.t. ∆
(
Ωij(k), k

)
=

{
∞, η(Ωij(k), k) > δ;

0, otherwise,
(12)

where Ωij is a permutation vector mapping patches p
Ωij(k)
i

to patches pk
j and Ωij(k) and k determine patch locations,

∆(·, ·) is a spatial regularization term that constrains the search
neighborhood, where η corresponds to distance between two patch
locations and threshold δ determines the allowed displacement
(different δ’s are evaluated in Fig 15(a)). We find the optimal
assignment Ω∗ij (patch correspondence) using the Kuhn-Munkres
(Hungarian) algorithm [20]. This yields the total dissimilarity:

ZHPML =
K∑

k=1

Φ
(
p
Ω∗

ij(k)

i ,pk
j ; θ(k)

)
. (13)

We refer to this formulation as HPML.
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3.3.3 Supervised Deformable model (DPML)
We employ a model which approximates continuous non-affine
warps by translating 2D templates [12], [43] (see Fig. 1). We
use a spring model to limit the displacement of patches. The
deformable dissimilarity score for matching the patch at location
k in bounding box i with bounding box j is defined as

ψ(pk
i , j) = min

l

[
Φ(pk

i ,p
l
j ; θ(k)) + αk∆(k, l)

]
, (14)

where patch feature pl
j is extracted from bounding box j at

location l; appearance term Φ(pk
i ,p

l
j ; θ(k)) computes the feature

dissimilarity between patches and deformation cost αk∆(k, l)
refers to a spring model that controls the relative placement of
patches k and l. ∆(k, l) is the squared distance between the patch
locations. αk encodes the rigidity of the spring: αk = ∞ corre-
sponds to a rigid model, while αk = 0 allows a patch to change
its location freely. Notice the difference to HPML, for which the
definition of ∆ allows us to perform discrete optimization (Ω∗

stands for optimal global one-to-one assignment). For DPML we
define ∆ a continues function and we first optimize the patch
alignment locally (ψ(pk

i , j)) and then combine these deformable
dissimilarity scores into a unified dissimilarity measure

ZDPML =
K∑

k=1

wkψ(pk
i , j)

= 〈w,ψij〉, (15)

where w is a vector of weights and ψij corresponds to a vector
of patch dissimilarity scores.

Learning αk and w: Similarly to [29], we define the optimization
problem as a relative distance comparison of triplets {i, j, z} such
that 〈w,ψiz〉 > 〈w,ψij〉 for all i, j, z; where i and j correspond
to bounding boxes extracted from different cameras containing
the same person, and i and z are bounding boxes from different
cameras containing different people. Unfortunately, Eq. 14 is
non-convex and we can not guarantee avoiding local minima.
In practice, we use a limited number of unique spring constants
αk and apply two-step optimization. First, we optimize αk with
w = 1, by performing exhaustive grid search (see Section 4.3)
while maximizing Rank-1 recognition rate. Second, we fix αk and
determine the best w using structural SVMs [18]. This approach
is referred to as DPML.

3.4 Deep patches
It is common practice in person re-identification to combine
handcrafted color and texture descriptors for describing image
regions and then let metric learning to discover relevant features
and discard irrelevant ones. Often color histograms in different
color spaces together with SIFT-like features are concatenated
into high-dimensional feature vectors [2]. Xiao et al. [40] showed
that CNN models also can effectively be applied to person re-
identification despite of insufficient data. They proposed to train
jointly the CNN with data from multiple datasets and then fine-
tune the model to a given camera pair using a domain-guided
dropout strategy. In this work we adopt the CNN model from [40],
but instead of training it for whole images, we train it for patches
to obtain highly robust feature representation. This model learns
a set of high-level feature representations through challenging
multi-class identification tasks, i.e. , classifying a training image
into one of C identities. As the generalization capabilities of the

Fig. 3: Deep patch feature learning with the CNN: each image
is divided into a set of 8 non-overlapping patches. The identity
of each patch is extended by its location. As a result, the CNN is
forced to recognize not only the person identity but also the patch
location.

learned features increase with the number of classes predicted
during training [36], we need C to be relatively large (e.g. several
thousand). While training the CNN for patches, we modify the
training strategy. First, each image is divided into a set of 8 non-
overlapping patches of size height/4 × width/2 and then each
patch (although comes from the same image but from different
location) gets assigned a new identity. As a result, the CNN
model is forced to determine not only the person identity from
which the patch has been extracted but also the patch location.
Given a dataset with images of M identities, the task becomes
to classify patches into C = 8M identities. When the CNN is
trained to classify a large number of identities and configured
to keep the dimension of the last hidden layer relatively low
(e.g. , setting the number of dimensions for fc7 to 256 [40]),
it forms compact and highly robust feature representations for
re-identification. We found that the learned deep patch feature
representation is very effective and combined with metric learning
approaches it significantly outperforms state-of-the-art techniques.
Figure 3 explains the training of our deep patch features.

4 EXPERIMENTS

We carry out experiments on four challenging datasets: VIPeR
[13], i-LIDS [49], CUHK01 [22] and CUHK03 [23]. The results
are analyzed in terms of recognition rate, using the cumulative
matching characteristic (CMC) [13] curve its rank-1 accuracy.
The CMC curve represents the expectation of finding the correct
match in the top r matches. The curve can be characterized by
a scalar value computed by normalizing the area under the curve
referred to as nAUC value.

Section 4.1 describes the benchmark datasets used in the
experiments. We explore our rigid patch metric model (PML)
together with its parameters, including different metric learning
approaches (θ) in Section 4.2. The deformable models (HPML
and DPML) are discussed in Section 4.3. Finally, in Section 4.4,
we compare our performance to other state of the art methods.

4.1 Datasets
VIPeR [13] is one of the most popular person re-identification
datasets. It contains 632 image pairs of pedestrians captured by
two outdoor cameras. VIPeR images contain large variations in
lighting conditions, background, viewpoint, and image quality
(see Fig. 4). Each bounding box is cropped and scaled to be
128 × 48 pixels. We follow the common evaluation protocol for
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Fig. 4: Sample images from VIPeR dataset. Top and bottom lines
correspond to images from different cameras. Columns illustrate
the same person.

Fig. 5: Sample images from i-LIDS dataset. Top and bottom lines
correspond to images from different cameras. Columns illustrate
the same person.

this database: randomly dividing 632 image pairs into 316 image
pairs for training and 316 image pairs for testing. We repeat this
procedure 10 times and compute the average CMC curves for
obtaining reliable statistics.
i-LIDS [49] consists of 119 individuals with 476 images. This
dataset is very challenging since there are many occlusions. Often
only the top part of the person is visible and usually there is a
significant scale or viewpoint change as well (see Fig. 5). We
follow the evaluation protocol of [29]: the dataset is randomly
divided into 60 image pairs used for training and the remaining
59 image pairs are used for testing. This procedure is repeated 10
times for obtaining averaged CMC curves.
CUHK01 [22] contains 971 persons captured with two cameras.
For each person, 2 images for each camera are provided. The
images in this dataset are better quality and higher resolution
than in the two previous datasets. Each bounding box is scaled to
be 160 × 60 pixels. The first camera captures the side view of
pedestrians and the second camera captures the frontal view or the
back view (see Fig. 6). We follow the common evaluation setting:
the persons are split into 485 for training and 486 for testing.
We repeat this procedure 10 times for computing averaged CMC
curves.
CUHK03 [23] is one of the largest published person re-
identification datasets. It contains 1467 persons, where each
person has 4.8 images on average. The dataset provides both the
manually cropped bounding box images and the automatically
detected bounding box images with a pedestrian detector [12]. For
evaluation we follow the testing protocol of [23]: the identities
are randomly divided into non-overlapping training and test
sets. The training set consists of 1367 persons and the test set
consists of 100 persons. For testing we only use the automatically

Fig. 6: Sample images from CUHK01 dataset. Top and bottom
lines correspond to images from different cameras. Columns
illustrate the same person.

detected pedestrians, while training is performed employing both
the manually cropped and the automatically detected images. We
follow a single-shot setting.

Training deep features: To learn our deep patch representation
we used two datasets: CUHK03 [23] and PRID2011 [17]. From
CUHK03 we used 1367 identities that were randomly selected for
the training [40]. PRID2011 contains 200 individuals appearing in
two cameras and additionally it contains 185 identities that appear
in the first camera but do not reappear in the second one, and
549 identities that appear only in the second camera, in total 934
identities. Merging both datasets, we have M = 2301 identities
and by further dividing images into a set of 8 non-overlapping
patches the CNN is forced to perform multi-class identification of
C = 8× 2301 = 18408 identities. The dimensionality of the last
hidden layer is kept to be low (256), which stands for our deep
feature representation. The architecture and training parameters
are kept the same as in [40]. Unlike [40], we do not perform
any fine-tuning of the deep patch feature representation on test
datasets. Instead, we proposed to perform Mahalanobis metric
learning to adjust to the metric to particular camera-pair variations.

4.2 Rigid Patch Metric Learning (PML)
In this section, we first compare our rigid patch model (PML)
to the standard full bounding box approach (BBOX). BBOX is
equivalent to the method presented in [19].

Each bounding box of size w × h is divided into a grid of
K = 60 overlapping patches of size w

4 ×
w
2 with stride w

8 ×
w
4

resulting in a 20× 3 layout (different patch layouts are discussed
in Section 4.2.2). In this experiment, patches are represented by
concatenated histograms in LAB and HSV color space together
with color SIFT (see details on different patch representations in
Section 4.2.3). For the full bounding box case, we concatenate
the extracted patch feature vectors into a high dimensional feature
vector. PCA is applied to obtain a 62-dimensional feature space
(where the optimal dimensionality is found by cross-validation).
Then, the KISS metric [19] is learned in the 62-dimensional
PCA subspace. For PML, instead of learning a metric for the
concatenated feature vector, we learn metrics for patch features. In
this way, we avoid undesirable compression. The dimensionality
of the patch feature vector is reduced by PCA to 35 (also found by
cross-validation) and metrics are learned independently for each
patch location. Fig. 7 illustrates the comparison on three datasets.
It is apparent that PML significantly improves the re-identification
performance by keeping a higher number of degrees of freedom
(35× 60) when learning the dissimilarity function.
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Fig. 7: Performance comparison of Patch based Metric Learning (PML) vs. full bounding box metric learning (BBOX). Rank-1
identification rates as well as nAUC values provided in brackets are shown in the legend next to the method name.
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Fig. 9: Dividing image regions into several metrics. (a) nAUC
values w.r.t. a location of a learned metric; (b) clustering results
for different number of clusters m.

4.2.1 Number of Patch Metrics
As mentioned earlier, our formulation allows θ to be learned per
patch location. In practice, there may be insufficient training data
for this many degrees of freedom. We evaluate two extremes:
learning m = 60 independent KISS metrics (one per patch

location) and learning a single KISS metric for all 60 patches
(m = 1), see Fig. 8. The results indicate that multiple metrics
lead to significantly better recognition accuracy.

To understand the variability in the learned metrics, we setup
the following experiment: learn a metric for a particular location
k, and then apply this metric to compute dissimilarity scores for all
other patch locations. We plot nAUC values w.r.t. to the location
of the learned metric in Fig. 9(a). It is apparent that metrics learned
at different locations yield different performances. Surprisingly,
higher performance is obtained by metrics learned on patches at
lower locations within the bounding box (corresponding to leg
regions). We believe that it is due to significant number of images
in the VIPeR dataset having dark and cluttered backgrounds in the
upper regions (see the last 3 top images in Fig. 4). Lower parts of
the bounding boxes usually have more coherent background from
sidewalks.

Additionally, we cluster patch locations spatially using hier-
archical clustering (bottom-up), where similarity between regions
is computed using nAUC values. Fig. 9(b) illustrates clustering
results w.r.t. to the number of clusters. Next, we learn metrics
for each cluster of patch locations. These metrics are then used
for computing patch similarity in corresponding image regions.
Recall from Fig. 8 that the best performance was achieved with
m = 60. In this circumstance, there appears to be sufficient
data to train an independent metric for each patch location. We
test this hypothesis by reducing the amount of training data
and evaluating the optimal number of patch metrics when fewer
training examples are available. Fig. 10 illustrates that the patch-
based approach achieves high performance much faster than full
bounding box metric learning. Interestingly, for a small number
of positive pairs (less than 100), a reduced number of metrics
gives better performance. When a common metric is learned for
multiple patch locations, the amount of training data is effectively
increased because features from multiple patches can be used as
examples for learning the same metric (Section 3.1).

4.2.2 Patch layout
Our model consists of a set of rectangular patches extracted on a
grid layout. The size of the patch and the grid density (determined
by a stride) define the total number of patches K and a level
of patch overlap. To investigate the impact of these parameters on
the re-identification performance, we evaluate PML with the KISS
metric for different patch layouts. Fig. 11(a) shows the results
for different K defined by different patch sizes and different
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Fig. 10: Rank-1 recognition rate with varying size of training
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strides (e.g. K = 60 is a result of patch size w
4 ×

w
2 with stride

w
8 ×

w
4 and for K = 8 stride dimensions are equal to the patch

size, which corresponds to a configuration of non-overlapping
patches). From Fig. 11(a) we can notice that having small patches
(e.g. for K = 140 with patch size w

4 ×
w
4 ) might slightly

decrease the performance, and in general keeping patches larger
(see K = 39 and K = 60) yields better recognition accuracy.
The results also indicate that overlapping patches (when the stride
is smaller than the patch size) perform significantly better than
non-overlapping patches (K = 8 and K = 20 in Fig. 11(a)
correspond to layouts with non-overlapping patches). Similarly,
using overlapping deep patch features yields better performance
compared with non-overlapping patches (see Fig. 11(b)). As a
result, in further performance evaluations we select layouts that
consist of overlapping patches for both handcrafted features as
well as deep patch features. For handcrafted features we select
K = 60 – the best performing configuration in Fig. 11(a). For
deep patches we also select a configuration with overlapping
patches but with K = 39 to match the patch size used during
the deep patch training (see Section 3.4). Notice that we train the
deep patch feature using non-overlapping patches, which we found
to perform slightly better.

4.2.3 Patch representation

It is common practice in person re-identification to combine color
and texture descriptors for describing an image. We evaluated
the performance of different combinations of representations,
including Lab, RGB and HSV histograms, each with 30 bins
per channel. Texture information was captured by color SIFT,
which is the SIFT descriptor extracted for each Lab channel
and then concatenated. In our previous work [2], we selected the
combination of Lab, HSV and color SIFT as the best descriptor.
The dimensionality of concatenated HSV, Lab and color SIFT
is 564 (30 × 3 + 30 × 3 + 128 × 3 = 564). In this work,
instead of handcrafting the patch representation, we propose to
learn patch features directly from data with CNNs through multi-
class identification task (Sec. 3.4). As a result, each deep patch
is represented by 256-dimensional feature vector (fc7) and we
reduce its dimensionality to 60 by PCA before running KISS
metric learning. Fig. 12(a) illustrates the averaged CMC curves
for VIPeR data set. It is clear that the proposed deep patch

VIPeR CUHK01 iLIDS
METHOD H-C CNN H-C CNN H-C CNN

PML, KISS 33.5 43.2 37.4 61.5 54.4 74.8
PML, XQDA 29.5 37.6 39.2 49.2 57.8 73.2
PML, LSSL 37.1 47.0 42.7 71.3 60.7 78.3

TABLE 1: Performance comparison of different metric learning
approaches using handcrafted features (HSV+Lab+ColorSIFT)
denoted by H-C and deep patches CNN. CMC rank-1 accuracies
are reported.

representation (CNN) outperforms all handcrafted representations
by a large margin.

When learning the patch representation, we propose to force
the CNN to recognize not only the person identity but also the
patch location. To evaluate the effectiveness of our approach we
also trained the CNN for patches, while neglecting the patch loca-
tions (CNN (-k)). Fig. 12(b) illustrates that including information
on the patch locations allows us to learn more effective features.
The CNNs learned with patch locations perform significantly
better for both L2 and KISS metric learning.

4.2.4 Patch metric learning
In this section we evaluate our PML model, while employing
previously discussed metric learning approaches: KISS metric
learning [19], XQDA metric learning [25] and LSSL metric
learning [42]. We investigate the performance while employing
both handcrafted features (HSV+Lab+ColorSIFT) and deep patch
features. As the i-LIDS dataset contains a relatively small number
of training samples (only 60 subjects available for training) and as
indicated in our previous analysis (Section 4.2.1), we learn a single
θ for all patches, thus increasing the amount of training examples
(m = 1). From Fig. 13 it is apparent, that deep patch features
significantly improve the recognition accuracy on all datasets. It is
also clear that LSSL metric learning consistently achieves the best
performance among all metric learning approaches. Surprisingly,
XQDA often performs worse than standard KISS metric learning,
especially when using deep patches. This discrepancy might be
due to the fact that deep patches are already highly discriminative
and applying additional discriminative objectives (the Generalized
Rayleigh Quotient) may decrease the performance. Table 1 sum-
marizes the results.

Additionally we evaluated the performance of the CNN model
while learning on the whole images (equivalent to JSTL model
[40]) combined with metric learning approaches. Recall that we
only use CUHK03 and PRID2011 datasets for training deep
features. Each image is represented by 256-dimensional feature
vector and we reduce its dimensionality to 50 by PCA before run-
ning KISS and LSSL metric learning (found by cross-validation).
From Fig. 14 it is apparent that metric learning improves recog-
nition accuracy of global deep features (compare with JSTL,
L2). However, it is also clear the best performance of JSTL
combined with metric learning is far behind the proposed patch-
based learning combined with our deep patch representation.

4.3 Deformable Patch Metric Learning
4.3.1 Unsupervised Deformable Model (HPML)
Fig. 15(a) illustrates the impact of our unsupervised deformable
model on recognition accuracy. We also compare the effectiveness
of different neighborhoods on the overall accuracy. In Eq. (12), we
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Fig. 11: Performance comparison on VIPeR dataset w.r.t. different patch layouts; (a) using handcrafted features – HSV+Lab+ColorSIFT;
(b) using deep patches – CNN. Overlapping patches yield better performance.
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Fig. 12: Performance comparison of different patch descriptors for VIPeR dataset; (a) the best performance is achieved by our deep
patch representation (CNN); (b) forcing the CNN to determine the patch locations along with the person identities increases the
effectiveness of the deep features: CNN (-k) corresponds to the CNN trained without patch locations, and CNN was learned with patch
locations.

constrain the displacement of patches to δhorizontal × δvertical num-
ber of pixels. Interestingly, allowing patches to move vertically
(δvertical > 0) generally decreases performance. We believe that
this is due to the fact that images in all of these datasets were
annotated manually and vertical alignment (from the head to the
feet) of people in these images is usually correct. Allowing patches
to move horizontally consistently improves the performance for all
datasets. The highest gain in accuracy is obtained on the iLIDS
dataset (3%), which contains inaccurate detections and large
amount of occlusions. This indicates that our linear assignment
approach provides a reliable solution for pose changes.

4.3.2 Supervised Deformable model (DPML)
We simplify Eq. 14 by restricting the number of unique spring
constants. Two parameters α1, α2 are assigned to patch locations
obtained by hierarchical clustering with the number of clusters
m = 2 (see Fig. 15(b)). αk encodes the rigidity of the patches

at particular locations. We perform an exhaustive grid search
iterating through α1 and α2 while maximizing Rank-1 recognition
rate. Fig 15(b) illustrates the recognition rate map as a function
of both coefficients. Interestingly, rigidity (high spring constants)
is useful for lower patches (the dark red region in the left-bottom
corner of the map) but not so for patches in the upper locations of
the bounding box. This might be related to the fact that metrics
learned on the lower locations have higher performance (compare
with nAUC values in Fig. 9).

Fig. 16 illustrates the performance comparison of different
patch integration functions Z . We employ LSSL metric learning
together with deep patch features. The results clearly show
that introducing deformable models consistently improves the
recognition accuracy in all datasets and that the best performance
is obtained by the supervised spring model DPML.
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(d) HSV+Lab+ColorSIFT
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Fig. 13: Performance comparison of different metric learning approaches using deep patches – CNN – top row and handcrafted
features - HSV+Lab+ColorSIFT – bottom row. LSSL metric learning performs the best among all metric learning techniques.
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Fig. 14: Performance comparison of global deep features (JSTL
model) combined with metric learning approaches vs. Patch-
based Metric Learning (PML) based on the proposed deep patch
features. Deep patch features significantly outperform global deep
features.

Computational complexity Although the rigid model (PML)
does not perform as good as deformable models, it is less
computationally expensive. It requires only K similarities to be
computed to compare two images. However, although HPML
requires solving Hungarian algorithm (Eq. (12)), in practice the
matrix K × K (see Fig. 2) can be relatively sparse (compare
the performance of different neighborhoods in Fig. 15(a)). Given
τ non-infinite entries in this matrix, we employed QuickMatch

algorithm [28] that runs in linear time O(τ). As a result, the deep
texture feature extraction is the slowest part and it depends on
the GPU architecture (e.g. on Tesla K80 VIPeR experiment takes
330s, with 310s spent on deep feature extraction). DPML is the
slowest model and the same experiment takes around 30min.

4.4 Comparison with Other Methods

Table. 2 reports the performance comparison of our patch-
based methods with state-of-the-art approaches across 4 datasets:
VIPeR, CUHK01, iLIDS and CUHK03-detected. Our methods
outperform all state-of-the-art techniques on all datasets. The
maximum improvement is achieved on the iLIDS dataset. We
improve the state-of-the-art rank-1 accuracy (64.6%) by almost
18% (82.2%). This dataset contains a relatively small number of
training samples (we use only 60 subjects for training). Driven
by our previous analysis (Section 4.2.1), we learn a single θ for
all patches, thus increasing the training set. As a result, PML,
HPML and DPML significantly outperform the state-of-the-art
approaches. There are three aspects that make our approach more
effective on iLIDS: (1) we are able to generate a significantly
larger training set using m = 1, (2) occlusions in images pollute
only a few patch scores in our similarity measure, while in case
of full-image based metric learning they might have a global
impact on the final dissimilarity measure, (3) misaligned features
can be corrected by our deformable models. Notice, that our
simplest patch aggregation technique (PML) already achieves very
competitive results. This highlights effectiveness of combining
patch driven LSSL metric learning with deep patch representation.
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applying Hungarian algorithm for matching patches; (b) DPML – exhaustive grid search over α1 and α2 coefficients for VIPeR. α1

and α2 correspond to patches locations w.r.t. to the left image. Grid search map illustrates Rank-1 recognition rate as a function of
(α1, α2). The white dot highlights the optimal operating point.
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Fig. 16: Performance comparison of Patch based Metric Learning (PML) with our deformable models: unsupervised HPML and
supervised DPML. Rank-1 identification rates as well as nAUC values provided in brackets are shown in the legend next to the
method name.

METHOD VIPeR CUHK01 iLIDS CUHK03

DPML-CNN 51.7 75.9 82.2 84.0
HPML-CNN 48.2 72.8 81.3 82.1
PML-CNN 47.0 71.3 78.3 80.6
DPML [2] 41.4 35.8 57.6 -
PML [2] 33.5 30.6 51.6 -

eSDC [46] 26.7 15.1 36.8 -
SDALF [11] 19.9 9.9 41.7 -
TL [31] 34.1 32.1 50.3 -
Dropout [40] 38.6 66.6 64.6 75.3
KISSME [19] 19.6 16.4 28.4 -
LOMO+XQDA [25] 40.0 63.2 46.3
Mirror [6] 42.9 40.4 -
Ensembles [29] 45.9 53.4 50.3 62.1
MidLevel [47] 29.1 34.3 - -
kLDFA [41] 32.8 - 40.3 -
DeepNN [1] 34.8 47.5 - 45.0
Null Space [44] 42.2 64.9 - 53.7
Null Space (fusion) [44] 51.1 69.0 - 54.7
Triplet Loss [7] 47.8 53.7 60.4 -
Gaussian+XQDA [27] 49.7 57.8 - -
Joint CNN [37] 35.7 71.8 - 52.2
Sample-Specific SVM [45] 42.6 65.9 - 57.0

TABLE 2: Performance comparison on VIPeR, CUHK01, iLIDS
and CUHK03-detected; CMC rank-1 accuracies are reported.
The best scores are shown in red. The second best scores are
highlighted in blue. Our approach significantly outperforms the
best state of the art approaches.

5 SUMMARY

Re-identification must deal with appearance differences arising
from changes in illumination, viewpoint and a person’s pose.
Traditional metric learning approaches do not address registration
errors and instead only focus on feature vectors extracted from
bounding boxes. In contrast, we propose a patch-based approach.
Operating on patches has several advantages:

• Extracted feature vectors have lower dimensionality and
do not have to be subject to the same levels of compression
as feature vectors extracted for the entire bounding box.

• Multiple patch locations can share the same metric, which
effectively increase the amount of training data.

• We allow patches to adjust their locations when comparing
two bounding boxes. The idea is similar to part-based
models used in object detection. As a result, we directly
address registration errors while simultaneously evaluating
appearance consistency.

• Learning the deep patch features directly from data and
forcing the CNN to determine also the patch location
results in highly effective patch representation.
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Our experiments illustrate how these advantages lead to new
state of the art performance on well established, challenging re-
identification datasets.
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