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Abstract

Re-identifying people in a network of cameras requires
an invariant human representation. State of the art algo-
rithms are likely to fail in real-world scenarios due to seri-
ous perspective changes. Most of existing approaches focus
on invariant and discriminative features, while ignoring the
body alignment issue. In this paper we propose 3 methods
for improving the performance of person re-identification.
We focus on eliminating perspective distortions by using
3D scene information. Perspective changes are minimized
by affine transformations of cropped images containing the
target (1). Further we estimate the human pose for (2) clus-
tering data from a video stream and (3) weighting image
features. The pose is estimated using 3D scene informa-
tion and motion of the target. We validated our approach
on a publicly available dataset with a network of 8 cam-
eras. The results demonstrated significant increase in the
re-identification performance over the state of the art.

1. Introduction

Person re-identification is a well defined task that re-
quires finding a particular person in a network of cameras
with non-overlapping fields of view. As video surveillance
usually provides low resolution data, this task is approached
by extracting a global appearance of the target using its
clothing features. The clothing is not as distinctive as face
or iris features, thus we often treat this problem as a retrieval
task. However, the low recognition accuracy of existing
approaches not only comes from insufficient discriminative
power of clothing features, but also from significant appear-
ance changes caused by variations in view angles, lighting
conditions and person poses.

Current state of the art approaches concentrate either on
feature modeling [2, 5, 15] producing descriptors invari-
ant to camera changes or on metric learning [4, 9, 17] that
should boost performance regardless of the representation
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Figure 1. Improvements on re-identification using viewpoint cues:
(a) target alignment (section 2); (b) multiple target appearance
based on clustering (section 3.2); (c) pose orientation-driven
weighting (section 3.3). The illustration shows an example of the
same person viewed from two different cameras (C5 and C8).

choice. Designing a new descriptor, we need to look for
a trade-off between its discriminative power and invariance
through cameras. This task is particularly hard, especially,
as this trade-off varies from data to data [14]. Metric learn-
ing approaches use training data to search for strategies
that combine given features maximizing inter-class varia-
tion whilst minimizing intra-class variation. However, these
approaches focus on learning a function which transfers the
feature space from the first camera to the second one, intro-

ducing the requirement of training (
c
2

) models for c cam-

eras (e.g. a network of 8 cameras needs to train 56 met-
rics). Moreover, metric learning based approaches need
large training data (hundreds of annotated image pairs with
the same individual registered by different cameras) for ev-
ery camera pair. This alone might make these approaches
inapplicable in small camera networks where acquisition of
labeled data is unattainable.



1.1. Perspective changes

Until now, most of appearance-based approaches were
usually evaluated on cropped images that are manually ex-
tracted from a few video streams taken at eye level (no
significant perspective changes). Slight pose changes can
usually be approached by adopting perceptual principles of
symmetry and asymmetry of the human body [5]. The ex-
tracted features are then weighted using the idea that fea-
tures closer to the bodies’ axes of symmetry are more robust
against scene clutter.

In this paper we address the real world scenario, where
pose orientation of a person might change due to seri-
ous perspective changes. Figure 1(a) illustrates that the
change might be significant, thus having noticeable impact
on recognition performance. We offer a simple but effi-
cient affine transformation using 3D scene information to
improve alignment of two images extracted from different
cameras (section 2).

1.2. Multiple signature appearance

Further classification of appearance-based techniques
distinguishes the single-shot and the multiple-shot ap-
proaches. The former class extracts appearance using a sin-
gle image [8, 12, 15], while the latter employs multiple im-
ages of the same object to obtain a robust representation
[2, 5, 6, 13, 17]. The main idea of multiple-shot approaches
is to take advantage of several frames for extracting a more
reliable representation [1, 6, 11]. Although multiple-shot
approaches employ several frames for generating the signa-
ture, in the end they usually produce a single (averaged)
representation ignoring the possible pose and view-angle
changes that can occur while tracking the target in a single
camera. Those approaches either select more frequent fea-
tures or blend the appearance by averaging features. On the
contrary, we propose to cluster the trajectory based on esti-
mated pose cues and generate the signature for every signif-
icantly different appearance (see figure 1(b) where the ap-
pearance of the target is clustered into two appearances). Fi-
nally we produce a multiple signature consisting of several
signatures ordered by the orientation of their pose. Having
pose information, we determine weights of features w.r.t.
the distance from the frontal viewpoint for every signa-
ture (see figure 1(c)). This improves the alignment and the
matching accuracy.

This paper makes the following contributions:

• We eliminate perspective distortions by applying a
simple affine transformation (rotation) on cropped im-
ages containing a person of interest. This transforma-
tion is based on 3D scene information (section 2).

• We offer to employ pose cues for clustering the trajec-
tory with a target. Pose is estimated using 3D scene

information and motion of the target. The proposed
clustering allows to measure the reliability of the de-
tected orientation in every frame (section 3.2).

• We propose an orientation-driven weighting strategy
of image features. Our idea is that different regions of
the target appearance ought to be aligned using pose
cues, minimizing appearance change and increasing
matching performance (section 3.3).

We validate all steps of our approach in section 4 before
discussing perspectives and concluding.

2. Target alignment
The changing viewpoint in a network of cameras is an

important issue and might significantly distort the visual ap-
pearance of a person. This problem has a direct impact on
the re-identification accuracy. Eliminating perspective dis-
tortions in an image region containing the target is often
called image rectification [10]. Although employing recti-
fication methods gives satisfactory results in pedestrian de-
tection tasks, we observed that the extracted homography
between the image and the ground planes can still produce
significant distortions in the texture inside the target appear-
ance. As a result, instead of employing rectification, we
propose a simple method that only rotates the cropped im-
age with of target by an angle α. This angle is extracted us-
ing 3D scene information (see figure 2(b)), by mapping the
vector orthogonal to the ground plane living in real world
coordinates to the vertical of a given image. This mapping
is achieved by employing the calibration information of the
camera (i.e. we employ Tsai calibration).
Rotation angle α: Given a detected person (a rough bound-
ing box around the person, see figure 2(b)), we select the
center point of the detection (point C). Having a pixel loca-
tion of this point in the image plane (xic, y

i
c), we compute its

corresponding point in the world coordinate system (xrc , y
r
c )

using calibration information and a fixed height of a person
h = 1.7 m. From this point, we can easily compute the or-
thogonal to the ground plane in the world coordinate system
meeting the head point (xrh, y

r
h) that has its corresponding

location (xih, y
i
h) in the image plane (pointH). The rotation

angle can be computed by

α = arctan

(
xih − xic
yic − yih

)
. (1)

Figure 2(c) illustrates the result of the rotation.

3. Multiple target appearance
This section introduces the method for extracting the

pose of a person using 3D scene information and the mo-
tion of the target (section 3.1). Using pose, we clus-
ter the trajectory into clusters with reliable pose detection



(a) trajectory (b) cropped (c) rotated

Figure 2. Affine transformation of the target image: (a) trajectory
of the target (color of the trajectory illustrates the reliability of the
detected pose, see section 3.2 for details); (b) the cropped image
obtained by the detection algorithm ; (c) the rotated image.

(section 3.2) and generate multiple signatures for the sin-
gle trajectory. For each such generated signature, we de-
termine orientation-driven weights for signature matching
(section 3.3).

3.1. Pose orientation θ

Given detection results for n frames, we compute a set
of central points Cr = {(xrc,1, yrc,1), . . . , (xrc,n, y

r
c,n)} that

lie in the real world coordinates system and correspond to
the center of the detections in the image plane. Using cal-
ibration information, we extract the position of the camera
projected on the ground plane (xrcam, y

r
cam). For each posi-

tion k ∈ [2, n] on the trajectory, let mk be the motion vector
defined as

mk =
[
xrc,k − xrc,k−1, yrc,k − yrc,k−1

]
, (2)

and vk the viewpoint vector defined as

vk =
[
xrcam − xrc,k−1, yrcam − yrc,k−1

]
. (3)

We define the pose orientation θk using dot product between
these two vectors

θk = arccos

(
vk ·mk

|vk||mk|

)
. (4)

Figure 3(a) presents θ values for the given trajectory (fig-
ure 3(d)) and figure 5 shows an illustration of orientation
angle θ.

3.2. Orientation-driven clustering

In figure 3(a), we can notice that the θ estimation might
be noisy. We minimize noise by smoothing the data:

θsk =

k+z∑
l=k−z

θl
2z + 1

, (5)

where z is a smoothing parameter (we set z = 5 in ex-
periments). This operation provides us more reliable pose
orientation cues (figure 3(b)).
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Figure 3. Orientation driven trajectory clustering: (a) original
pose orientation θ estimated from the video; (b) the result of the
smoothing operation; (c) our control derivative function; (d) the re-
liability of the trajectory (red color indicates low reliability, while
blue stands for the highest).

The key idea of clustering the trajectory is to obtain mul-
tiple appearances of the target w.r.t. its orientation. By de-
tecting significant changes in orientation, we believe that we
can detect significant changes in the appearance. We esti-
mate the pose changes using the control derivative function
δk defined as

δk = max
l=k−z...k+z

dθsk(t+ l)

dt
. (6)

We use this function to measure the reliability of the orien-
tation θ. We assume that peaks in δ (see figure 3(c)) and
their neighborhoods might provide unreliable information.
Figure 3(d) illustrates the trajectory and its reliability. We
can notice that the trajectory is unreliable during the pose
change (the color red indicates low reliability, while blue
– the highest). Frames with estimated unreliable orienta-
tion (δ > 10) are removed from the trajectory, determining
gaps in the trajectory, thus clustering it into the multiple ap-
pearances. Each appearance cluster is labeled with its mean
orientation (e.g. the person in figure 3(d) was separated into
two clusters, labeled with orientation 191◦ and 99◦). The
output multiple signature for the target consists of signa-
tures computed from each cluster.

3.3. Orientation-driven feature weighting and
matching

Each trajectory cluster consists of a set of cropped and
rotated images with estimated poses. From such images we



Figure 4. Sample aligned images and their weight distributions for different orientations. The first row shows aligned images, rotated by α.
The second row illustrates weight distributions (looking from the left to the right the orientation angle θ in these examples varies from 16◦

to 309◦ with a ∼ 13◦ step).

Figure 5. Computation of the new center of the Epanechnikov ker-
nel. The original kernel is shifted based on the detected orien-
tation of the person w.r.t. to the camera. We shift the kernel by
∆(θs) in the horizontal direction. On the right we can see the
change of weight distributions w.r.t. the detected orientation angle
for θs = 16◦ and θs = 46◦.

extract a dense grid of overlapping color features (patches).
We propose a weighting strategy of those patches based on
the estimated pose. We eliminate background information
by employing an Epanechnikov kernel, while determining
the feature weights.

We define the Epanechnikov kernel as a function of the
orientation θs with variable width. Modifying the center of
the kernel w.r.t. θs, we address the problem of appearance
changes. Let every image be scaled to a size of W × H .
Defining the center of the Epanechnikov kernel, we shift it
in the horizontal direction by

∆(θs) = sgn(sin(θs))
Wsin2(θs)

2
(7)

(see figure 5). As a result, we define kernel parameters as

h = H
2 (8)

w(θs) = W
2 + ∆(θs). (9)

Given patch p of the dense feature grid, we define its weight
as Kx,y(θs) expressed by 3

4

(
1−

(
x

w(θs)

)2 − ( yh)2), |( x
w(θs)

)2
+
(
y
h

)2| ≤ 1;

0, otherwise,
(10)

where (x, y) are coordinates of patch p computed relatively
to the shifted center of Epanechnikov kernel. The weight
represents the patch’s contribution to the signature. Fig-
ure 4 illustrates sample images and determined weights of
image regions w.r.t. to orientation θs.

Signature matching for retrieval LetA and B be multiple
signatures of two individuals whose similarity we want to
measure. Each signature consists of a set of signatures ex-
tracted w.r.t. θs. Before computing the similarity between
corresponding features in a dense grid, we address the align-
ment problem. We align two signatures by minimizing the
difference between kernels:

min
a∈A,b∈B

|K(θsa)−K(θsb)|, (11)

where a and b are sub-signatures of A and B, expressed by
weight matrices K. Having aligned signatures, we com-
pute similarity of corresponding features using averaged
Epanechnikov weights.

4. Experimental results
This section focuses on evaluating all steps of our ap-

proach in a real world scenario. We illustrate the improve-
ments at each step of the processing chain, discussing its
importance. Finally, we show that our approach signifi-
cantly outperforms state of the art results.

4.1. Database and experimental setup

We carry out experiments on the SAIVT-SOFTBIO
database [3]. This dataset consists of 152 people moving
through a network of 8 cameras. Subjects travel in an un-
controlled manner, thus most of subjects appear only in a
subset of the camera network. This provides a highly un-
constrained environment reflecting a real-world scenario.
In average, each subject is registered by 400 frames span-
ning up to 8 camera views in challenging surveillance
conditions (significant illumination, pose and viewpoint



STEP r = 1 r = 5 r = 10 r = 25
BASELINE 7.11% 21.09% 35.79% 59.60%
TA 11.12% 28.09% 42.79% 63.60%
TA+MS 20.30% 39.62% 52.92% 71.91%
TA+MS+W 23.02% 42.73% 54.64% 72.89%

Table 1. Validation of the proposed contributions on the SAIVT-
SOFTBIO dataset. Values correspond to the recognition accuracy
averaged among all 56 pairs of cameras at different ranks r.

changes). Each camera captures data at 25 frames per sec-
ond at a resolution of 704×576 pixels. Although some cam-
eras overlap, we do not use this information while testing
re-identification algorithms. The database provides XML
files with annotations given by coarse bounding boxes in-
dicating the location of the subjects in each frame. Using
the centers of these bounding boxes, we obtain trajectories
of the subjects. Subject images are cropped and aligned us-
ing the method described in section 2. After clustering the
trajectory, we randomly select N = 10 subsequent images
from each cluster to compute the sub-signature of the mul-
tiple signature appearance.

4.1.1 Appearance model

Every cropped image is scaled into a fixed size window of
64× 192 pixels. A set P of rectangular sub-regions is pro-
duced by shifting 32 × 32 regions with a 16 pixels step.
This operation results in |P| = 33 overlapping rectangular
sub-regions. From each sub-region, we extract RGB color
histograms. We minimize color dissimilarities caused by
camera illumination changes by applying histogram equal-
ization to each color channel.

4.1.2 Evaluation metrics

Re-identification performance is analyzed in terms of recog-
nition rate, using the averaged cumulative matching charac-
teristic (CMC) curve [7]. The CMC represents the expec-
tation of finding the correct match in the top n matches.
nAUC is a quantitative scalar of the CMC curve computed
by normalizing the area under the CMC curve. Every multi-
ple signature is used as a query to the gallery set of multiple
signatures from the other cameras. This procedure has been
repeated 10 times to obtain averaged CMC results for each
camera pair. Having 8 cameras, we evaluate our approach
on 56 pairs. While validating the steps of our approach,
we provide CMC curves and nAUC values corresponding
to the recognition accuracy averaged among all 56 pairs of
cameras at different ranks r.

Figure 6. CMC curves obtained on the SAIVT-SOFTBIO dataset.
CMC and nAUC values correspond to the recognition accuracy
averaged among all 56 pairs of cameras at different ranks r.

4.2. Results

Figure 6 and table 1 illustrate the impact of each step
of our algorithm on the re-identification accuracy. BASE-
LINE corresponds to signatures extracted using randomly
selected N = 10 subsequent frames. Labels TA, MS
and W correspond respectively to the given contributions:
Target Alignment (section 2), clustering into Multiple
target Signature (section 3.2) and the orientation-driven
Weighting (section 3.3). From the results it is apparent that
each step of the algorithm has a significant impact on the
performance. We consistently increase the recognition for
all ranks employing the proposed steps. We can notice that
the most important step is related to computation of the mul-
tiple signature appearance (i.e. for r = 1 we can notice an
increase of about 9% in the recognition accuracy). This step
is achieved by our clustering method. Although employing
Epanechnikov kernel (step W) improves the recognition, we
were expecting more significant improvement. Weighting
the features or finding the salience regions [16] in images is
still a challenging task and we will address this problem in
the future work.

For comparing with state of the art approach, we illus-
trate the performance of Color-soft [3] in figure 7. We
followed the experimental setup in accordance with [3],
thus focusing only either on cameras with similar view (fig-
ure 7(a)) or on cameras with a significant viewpoint change
(figure 7(b)). The results show clearly that our approach
significantly improves state of the art performance.

5. Conclusion and perspectives

This paper proposed 3 improvements for person re-
identification in a real-world scenario. We focused on elim-
inating perspective distortions by using 3D scene informa-



(a) similar view (Cam 3 and 8)

(b) dissimilar view (Cam 5 and 8)

Figure 7. Performance comparison using CMC curves, our
(TA+MS+W) vs. Color-Soft [3]. We can notice the significant
improvement, especially for dissimilar views (b). The example of
images from camera 5 and 8 are given in figure 1.

tion. Perspective changes are minimized by rotating the
cropped images w.r.t. the orthogonal to the ground plane.
Using different pose orientations, we divided the trajectory
into clusters capturing multiple target appearances, thus
significantly improving the recognition accuracy. Further,
we proposed a pose-driven weighting strategy to eliminate
background information and improve signature alignment.
We demonstrated that all steps of our approach consistently
improve the re-identification performance, outperforming
state of the art. Future work will focus on improving the
weighting strategy. We plan to learn a priori weights for
matching different poses using a depth sensor. This offline
learned weights could be then applied while matching dif-
ferent poses.
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