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Abstract

Re-identification refers to the task of finding the same
subject across a network of surveillance cameras. This task
must deal with appearance changes caused by variations
in illumination, a person’s pose, camera viewing angle and
background clutter. State-of-the-art approaches usually fo-
cus either on feature modeling – designing image descrip-
tors that are robust to changes in imaging conditions, or dis-
similarity functions – learning effective metrics to compare
images from different cameras. Typically, with novel deep
architectures both approaches can be merged into a single
end-to-end training, but to become effective, this requires
annotating thousands of subjects in each camera pair. Un-
like standard CNN-based approaches, we introduce a spa-
tial pyramid-like structure to the image and learn CNNs
for image sub-regions at different scales. When training
a CNN using only image sub-regions, we force the model
to recognize not only the person’s identity but also the spa-
tial location of the sub-region. This results in highly ef-
fective feature representations, which when combined with
Mahalanobis-like metric learning significantly outperform
state-of-the-art approaches.

1. Introduction
Person re-identification (re-id) refers to the task of find-

ing the same subject across a network of non-overlapping
surveillance cameras. The visual appearance model is fun-
damental for solving the re-id problem but its sensitivity to
imaging conditions, e.g. variations in illumination, chang-
ing camera viewpoints, different person’s poses; make the
problem very challenging.

Recent studies have shown [4, 6, 21, 22, 30, 33] that
metric learning approaches often achieve the best perfor-
mance in re-identification. Despite the huge progress in
deep learning, state-of-the-art re-identification techniques
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are still usually based on handcrafted image features com-
bined with Mahalanobis-like metric learning [4, 21, 22]. In-
sufficient data in re-identification datasets (the small num-
ber of subjects and images) makes training Convolutional
Neural Networks (CNNs) from scratch very difficult for
person re-identification. Training CNNs on larger datasets
(e.g. ImageNet) and fine-tuning to re-id usually does not
provide effective representation due to a domain mismatch
(e.g., the difference in the image content and quality).

Recently, Xiao et al. [30] have shown that CNN models
can also effectively be applied to person re-identification by
first merging multiple re-identification datasets into a single
dataset and then training jointly the CNN through challeng-
ing multi-class identification task i.e., classifying a training
image into one of T identities (where T is the total num-
ber of subjects across all training datasets). To increase
the performance for a given camera pair, a domain-guided
dropout strategy was proposed to fine-tune the model to spe-
cific imagining conditions.

In this paper, we also employ the strategy for merging re-
identification datasets into a single training dataset. How-
ever, instead of training CNNs for classifying person iden-
tities using whole images, we propose to train CNNs us-
ing only rectangular sub-regions of images (i.e., patches)
and force the neural network to recognize both the person’s
identity and the patch location. This makes the task more
difficult and more iterations are usually required for con-
vergence of the neural network, but in actual fact yields
better deep feature representations for patches. Moreover,
feeding CNNs with patches increases the number of classes
predicted during training, thus improving the generalization
capabilities of the learned features [26].

Inspired by spatial-pyramid-like matching [17], we train
different CNN models for different sizes of patches. Instead
of applying spatial-pyramid to the pooling layer [13, 29],
we apply it directly to the input image (the first layer).
To combine image regions at different spatial levels of
the pyramid, rather than using spatial pyramid kernels we
let Mahalanobis-like metric learning discover the optimal
weighting strategy. Our contributions are the following:



• We propose to introduce a spatial pyramid-like struc-
ture to the image and to learn deep feature representa-
tions for patches at different scales. We denote it as the
deep spatial pyramid features.

• Deep features extracted at different scales are further
combined by learning metrics locally for patches. As
the employed metric learning is based on a likelihood-
ratio test, we pool the patch dissimilarities by average
to form the final dissimilarity measure.

• We conduct extensive experiments on two benchmark
datasets – VIPeR [11] and CUHK01 [18]. The re-
sults illustrate that by combining deep spatial pyra-
mid features and Mahalanobis-like metric learning, we
achieve new state-of-the-art performance, outperform-
ing existing approaches by large margins.

2. Related work
Re-identification techniques can be divided into two groups:
feature modeling [3, 7, 9] – designs descriptors (usually
handcrafted) which are robust to changes in imaging condi-
tions, and metric learning [1,8,16,19,20,32,37] – searches
for effective distance functions to compare features from
different cameras.

The latter are usually more effective as they can adapt
to specific lighting conditions across cameras. Many dif-
ferent machine learning algorithms have been considered
for learning a robust similarity function. Gray et al. em-
ployed Adaboost for feature selection and weighting [12],
Prosser et al. defined the person re-identification as a rank-
ing problem and used an ensemble of RankSVMs [25]. Re-
cently features learned from deep convolution neural net-
works have also been investigated [1, 6, 19, 28, 30, 36].

However, despite advances in deep learning, state-of-
the-art re-identification performance still belongs to hand-
crafted image features combined with Mahalanobis-like
metric learning [4,22,33]. It might be due to the fact that in-
sufficient data in re-identification datasets (the small num-
ber of subjects and images) makes training Convolutional
Neural Networks (CNNs) from scratch very difficult for
person re-identification.

The most common choice of Mahalanobis-like metric
learning remains KISS metric learning [16]. The KISS met-
ric uses a statistical inference based on a likelihood-ratio
test of two Gaussian distributions modeling positive and
negative pairwise differences between features. Owing to
its effectiveness and efficiency, the KISS metric is a pop-
ular baseline that has been extended to linear [21, 24] and
non-linear [23,31] subspace embeddings. Most of these ap-
proaches learn a Mahalanobis distance function for hand-
crafted feature vectors extracted from full bounding box im-
ages.

In this paper, we propose to learn deep features
for patches with Convolutional Neural Networks (CNNs)
through challenging multi-class patch identification task.
The deep patch features are trained at different scales form-
ing the spatial pyramid-like structure. The idea of matching
features at different scales (pyramid matching) was origi-
nally proposed in [10] and then it was further extended to
2D images in [17]. First, a sequence of grids at resolu-
tions 0, . . . , l is constructed and then the number of matches
that occur at each level of resolution are combined using
weighted sums. The matches found at finer resolutions
are usually weighted more than matches found at coarser
resolutions. The weights are usually handcrafted, where
our approach lets metric learning to discover the optimal
weighting strategy. Recent studies have already introduced
the spatial-pyramid idea to the pooling layer [13, 29], but
our approach significantly differs from these techniques.
We incorporate the pyramid at the input layer, modifying
the training strategy. This results in highly effective deep
feature representations that together with metric learning
yields excellent re-identification accuracy.

3. Method
The proposed pipeline for learning similarity measures be-
tween images consists of three stages: (1) deep spatial pyra-
mid feature learning (Sec. 3.1), (2) deep feature extraction
(Sec. 3.2) and (3) metric learning (Sec. 3.3). We refer to our
approach as Deep Spatial Pyramid (DSP).

3.1. Deep Spatial Pyramid Feature Learning

Similar to [30], we use multiple datasets to train CNNs and
we adopt the CNN model from [30] as the main component
of our framework (3 convolutional layers, 3 BN-Inception
layers [15, 27] and two fully connected layers). This model
learns a set of high-level feature representation through a
challenging multi-class identification task, i.e., classifying
a training image into one of T identities. As the general-
ization capabilities of the learned features increase with the
number of classes predicted during training [26], we need
T to be relatively large (e.g. several thousand).

Instead of training a single CNN model for determin-
ing the person’s identity using whole images, we propose
to train three CNN models (see Fig. 1). This includes
CNNs that are trained only using sub-regions of images
(e.g. patches) to determine both the person’s identity and
the patch location. For training CNNs at level 1 and 2, we
propose the following strategy. First, each image is divided
into a set of non-overlapping patches of size ( h

4 × w) for
level 1 and ( h

4 ×
w
2 ) for level 2, where h and w correspond

to image height and width, respectively. Level 1 consists
of horizontal stripes to learn features that are viewpoint in-
variant, and level 2 is introduced to provide finer details



within the stripes. Each patch (although comes from the
same image but from the different location) gets assigned
a new identity. As a result, the CNN models are forced to
determine not only the person’s identity but also the patch
location. Given a training dataset with images of T identi-
ties, the task becomes to classify patches into C0 = T iden-
tities at level 0, C1 = 4T identities at level 1 and C2 = 8T
identities at level 2. When each CNN is trained to clas-
sify the large number of identities and configured to keep
the dimension of the last hidden layer relatively low (i.e.,
for simplicity we set the number of dimensions for fc7 to
256 for all three CNNs), it forms compact and highly robust
feature representations for re-identification.

3.2. Deep Feature Extraction

Let us assume that the trained CNNs can be used as deep
feature extractors, i.e., fc7-0 extracts deep features from the
whole images, fc7-1 extracts deep features from stripes of
size (h

4 × w) and fc7-2 extracts deep features from patches
of size (h

4 ×
w
2 ) (see Fig. 1).

We divide each image into a dense set of overlapping
rectangular patches to extract fc7 features (notice the differ-
ence with the training phase where we use non-overlapping
patches). At level 1 we use a horizontal stride h

8 which in
our configuration results in 13 patches (l1 = 13) and at
level 2 we use a stride (h

8 ×
w
4 ) which results in 39 patches

(l2 = 39). We found that using features from overlapping
patches significantly improves the recognition accuracy (see
Sec. 4.3).

Image i is then represented by a set of deep features
Xi = {x0

i ,x
1
i , . . . ,x

l1
i ,x

l1+1
i , . . . ,xl1+l2

i }, where x0
i cor-

responds to feature fc7-0 (level 0) extracted from the whole
image; each feature from x1

i to xl1
i is fc7-1 computed by

feeding CNN at level 1 with overlapping stripes of size
(h
4 × w); and each feature from xl1+1

i to xl1+l2
i is fc7-2

computed using CNN at level 2 from overlapping patches
of size (h

4 ×
w
2 ); superscript l is an iterator that determines

the feature level and the location.

3.3. Metric Learning

One could concatenate all features from Xi into a single
high-dimensional feature vector and then follow a standard
two stage processing for metric learning [16], i.e., first ap-
ply dimensionality reduction (e.g. PCA) and then perform
metric learning on the reduced subspace of differences be-
tween feature vectors. As our experiments illustrate (see
Sec. 4.5), instead of learning a metric for the global con-
catenated feature, it is better to learn metrics on a level of
patches (i.e., for xl

i) and then integrate all metrics by com-
puting the total dissimilarity (Eq. 3). Similar phenomenon
has been found in [2].
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Figure 1: Deep Spatial Pyramid feature learning. We
train 3 CNNs through multi-class identification task. At lev-
els 1 & 2 each image is divided into a set of non-overlapping
rectangular sub-regions. The identity of each sub-region is
extended by its location. As a result, the CNNs are forced
to recognize not only the person identity but also the sub-
region location. Learned CNN features fc7-0 , fc7-1 and
fc7-2 are further integrated with Metric Learning to pro-

duce the final dissimilarity function.

3.3.1 LSSL Metric Learning

Yang et al. [32] introduced Large Scale Similarity Learning
(LSSL) that can be seen as an extension of well known KISS
metric learning [16]. Following [32], we define the distance
between two features xl

i and xl
j extracted from two images

i and j at level and location l as

Φ(l)(xl
i,x

l
j) = (xl

i − xl
j)

TMl
d(xl

i − xl
j)− (1)

λ(xl
i + xl

j)
TMl

c(x
l
i + xl

j). (2)

Matrices Ml
d and Ml

c can be efficiently learned by as-
suming Gaussian structure for both the pairwise difference
space (dl

ij = xl
i − xl

j) to learn Ml
d and for the pairwise

commonness space (clij = xl
i + xl

j) to learn Ml
c.

Typically [16], the space of pairwise differences dl
ij =

xl
i − xl

j is divided into positive pairwise set d+(l)
ij when

i and j contain the same person and negative pairwise set
d
−(l)
ij otherwise. Learning metric Ml

d then involves com-

puting two covariance matrices: Σ
+(l)
d for positive pairwise

differences (Σ+(l)
d = (d

+(l)
ij )(d

+(l)
ij )T ) and Σ

−(l)
d for nega-



tive pairwise differences (Σ−(l)
d = (d

−(l)
ij )(d

−(l)
ij )T ). From

the log-likelihood ratio, the Mahalanobis metric becomes
Ml

d = (Σ
+(l)
d )−1 − (Σ

−(l)
d )−1. Analogously, Ml

c can be
learned by replacing the pairwise difference space dl

ij =

xl
i−xl

j with the pairwise commonness space clij = xl
i +xl

j

and following the same procedure. Compared to the stan-
dard KISS metric learning [16], Yang et al. [32] introduced
the commonness term (Eq. 2), which makes the dissimilar-
ity measure more effective. Additionally, [32] shows that
based on a pair-constrained Gaussian assumption, covari-
ance for pairs containing different people (Σ−(l)

d and Σ
−(l)
c )

can be directly deduced from image pairs containing the
same person (for details see [32]). Parameter λ is used
to balance between difference and commonness of feature
vectors. Similarly to [32], we set λ = 1.5 in all experi-
ments.

3.4. Final Dissimilarity

Typically, spatial pyramid matching uses the weighted sum
to combine the dissimilarities that occur at different levels.
Matches found at finer levels are usually weighted more
than matches found at coarser levels. In our approach, as
relevant features are emphasized and irrelevant ones are ig-
nored during the metric learning procedure, we found that
any further weighting of Φ(l)’s does not have significant im-
pact on the performance. As a result, our total dissimilarity
measure between two images i and j becomes

D(i, j) =
1

1 + l1 + l2

l1+l2∑
l=0

Φ(l)(xl
i,x

l
j). (3)

4. Experiments
We carry out experiments on two challenging datasets:
VIPeR [11] and CUHK01 [18]. To learn deep spatial
pyramid features we additionally use CUHK03 [19] and
PRID2011 [14] datasets. We report re-identification per-
formance employing the CMC curve [11] and its rank-1 ac-
curacy. The CMC curve provides the probability of finding
the correct match in the top r ranks.

4.1. Datasets and Evaluation Protocols

VIPeR [11] is one of the most popular person re-
identification datasets. It contains 632 image pairs of pedes-
trians captured by two outdoor cameras. VIPeR images
contain large variations in lighting conditions, background,
viewpoint, and image quality. We follow the common eval-
uation protocol for this database: randomly dividing 632
image pairs into 316 image pairs for training and 316 im-
age pairs for testing. We repeat this procedure 10 times
and compute the average CMC curves for obtaining reliable
statistics.

CUHK01 [18] contains 971 persons captured with two
cameras. The first camera captures the side view of pedes-
trians and the second camera captures the frontal view or the
back view. We follow the common evaluation setting: the
persons are split into 485 for training and 486 for testing.
We repeat this procedure 10 times for computing averaged
CMC curves. As 2 images for each person per camera are
provided, we evaluate both the single-shot and the multi-
shot setting.
CUHK03 [19] and PRID2011 [14] datasets are used for
learning our deep spatial pyramid features. CUHK03 is one
of the largest published person re-identification datasets. It
contains 1467 identities appearing in two camera views,
so it fits very well for learning the CNN model [30].
PRID2011 contains 200 individuals appearing in two cam-
eras and additionally it contains 185 identities that appear
in the first camera but do not reappear in the second one,
and 549 identities that appear only in the second camera,
in total 934 identities. Merging both datasets, we obtain
T = 1467 + 934 = 2401 identities. When training at level
0, the CNN is learned to classify T0 = 2401 identities; at
level 1 we force the CNN to classify T1 = 4×2401 = 9604
identities and when training at level 2 the CNN has to dis-
tinguish T2 = 8×2401 = 19208 identities. The dimension-
ality of the last hidden layer in each CNN is kept to be low
– 256. The architecture and training parameters are kept
the same as in [30]. Unlike [30], we do not perform any
fine-tuning on test datasets. The trained CNNs are used as
feature extractors on unseen datasets and then metric learn-
ing is performed.

4.2. Image Settings

We fixed the evaluation settings across both datasets. All
images are scaled to be 160×64 pixels. At level 1 the patch
size is 40× 64 pixels with 20 pixels horizontal stride. This
results in l1 = 13 fc7-1 features. At level 2 the patch size is
40 × 32 pixels with 20 × 16 stride. This results in l2 = 39
fc7-2 features. Before applying metric learning the original
dimensionality of fc7 features (256) is reduced by PCA to
68 dimensions (found by cross-validation).

4.3. Image Representation

A common practice in person re-identification is to use
handcrafted features (such as combination of color his-
tograms and texture descriptors) extracted from a person
image in a dense grid fashion [2, 4, 21]. We compare our
deep patch representation with a combination of color his-
tograms – Lab, HSV (each 30 bins per channel) and color
SIFT descriptor (SIFT computed for each Lab channel) [2].
The dimensionality of concatenated HSV, Lab and color
SIFT is 564 (30 × 3 + 30 × 3 + 128 × 3 = 564). We re-
duced this dimensionality to 35 (found by cross-validation).
In accordance with layout proposed for fc7-2, we extract the
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Figure 2: Performance comparison on VIPeR dataset. Rank-1 identification rates as well as nAUC values provided in brackets
are shown in the legend next to the method name: (a) comparison of fc7 features vs. handcrafted features; (b) comparison of
fc7 features on different levels of the spatial pyramid; (c) performance of concatenated fc7 features (CONCAT).

handcrafted descriptor from a dense grid with overlapping
rectangular patches. From Fig. 2(a) it is apparent that deep
patch features extracted from fc7-2 are more discriminative,
significantly outperforming the handcrafted representation
before (`2-norm) and after applying metric learning.

Additionally, we evaluated the performance of fc7-2
features extracted from non-overlapping patches. The re-
sults indicate that using overlapping deep patch features
yields significantly better performance compared with non-
overlapping patches (compare the blue curve with the red
one in Fig. 2(a).

4.4. Deep Spatial Pyramid

In this section we evaluate the performance of fc7 features
extracted at different levels of the pyramid. A comparison
in Fig. 2(b) illustrates how the performance changes after
applying metric learning. We can notice that metric learn-
ing is much more beneficial when applied to fc7 features
extracted from patches (e.g. fc7-1 and fc7-2) than to fc7-0
features extracted from whole images (compare the black
curve with the green and the red one). The best perform-
ing layer is fc7-1 and the best re-identification accuracy is
achieved by combining all levels of the spatial pyramid.

4.5. Metrics for Patches

A common approach is to concatenate all features into a sin-
gle high-dimensional feature vector, apply PCA and learn
a single metric for comparing images. In [2] it has been
shown that this might not the optimal approach and it is bet-
ter to learn metrics on the level of patches. We concatenate
fc7 features extracted from all levels into a single feature
vector and reduce the dimensionality to 110 components,
maximizing the rank-1 accuracy (CONCAT). Fig. 2(c) in-
dicates that indeed operating on patches yields better re-
identification accuracy.

METHOD VIPeR CUHK01, M=1 CUHK01, M=2

DSP 53.9 72.0 79.2

Dropout [30] 38.6 - 66.6
Null Space [33] 42.2 - 64.9
Null Space (fusion) [33] 51.1 - 69.0
Triplet Loss [6] 47.8 53.7 -
Gaussian+XQDA [22] 49.7 57.8 67.3
Specific SVM [34] 42.6 - 65.9
SCSP [4] 53.5 - -
DPML [2] 41.4 35.8 37.5
DeepNN [1] 34.8 47.5 -
LOMO+XQDA [21] 40.0 - 63.2
Mirror [5] 42.9 40.4 -
Ensembles [23] 45.9 53.4 -
MidLevel [35] 29.1 - 34.3

Table 1: Performance comparison on VIPeR and
CUHK01; CMC rank-1 accuracies are reported. The best
scores are shown in red. The second best scores are high-
lighted in blue. Our approach significantly outperforms the
best state of the art approaches.

4.6. Comparison with Other Methods

Table 1 illustrates the performance comparison of our DSP
method with state-of-the-art approaches across 2 datasets.
For CUHK01 we report accuracies for both the single-
shot setting (M=1) and the multi-shot setting (M=2). Our
method outperforms all state-of-the-art techniques on all
datasets. The maximum improvement is achieved on the
CUHK01 dataset. We improve the state-of-the-art rank-1
accuracy for M=1 (57.8) by 14.2% (72.0%) and for M=2
(69.0) by 10.2% (79.2%). Compared with Dropout [30]
(from which we adopted the CNN architecture), our method
achieves a gain of 15.3% for VIPeR dataset and a gain of
12.6% for CUHK01 dataset.



5. Conclusion
Standard Mahalanobis metric learning approaches rely on
handcrafted image features and do not benefit from new
deep learning architectures. Alternatively, learning CNNs
from scratch is very difficult due to insufficient data in re-
identification datasets. In this work we presented the novel
deep spatial pyramid framework that learns very effective
deep features for patches at different scales. Integrating
these features with metric learning leads to new state-of-
the-art performance on re-identification datasets.
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