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Abstract. This paper addresses the person re-identification task applied in a real-world scenario. Finding people in
a network of cameras is challenging due to significant variations in lighting conditions, different colour responses and
different camera viewpoints. State of the art algorithms are likely to fail due to serious perspective and pose changes.
Most of existing approaches try to cope with all these changes by applying metric learning tools to find a transfer
function between a camera pair, while ignoring the body alignment issue. Additionally, this transfer function usually
depends on the camera pair and requires labeled training data for each camera. This might be unattainable in a large
camera network. In this paper we employ 3D scene information for minimising perspective distortions and estimating
the target pose. The estimated pose is further used for splitting a target trajectory into the reliable chunks, each one
with a uniform pose. These chunks are matched through a network of cameras using a previously learned metric pool.
However, instead of learning transfer functions that cope with all appearance variations, we propose to learn a generic
metric pool that only focuses on pose changes. This pool consists of metrics, each one learned to match a specific pair
of poses, not being limited to a specific camera pair. Automatically estimated poses determine the proper metric, thus
improving matching. We show that metrics learned using only a single camera can significantly improve the matching
across the whole camera network, providing a scalable solution. We validated our approach on publicly available
datasets demonstrating increase in the re-identification performance.
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1 Introduction

Person re-identification is a well known problem in computer vision community. This task requires

finding a target appearance in a network of cameras with non-overlapping fields of view. The

changes in person pose together with different camera viewpoints and different colour responses

make the task of appearance matching extremely difficult.

Current state of the art approaches focus either on feature-modelling1–4 that designs descrip-

tors invariant to camera changes or on metric learning5–11 that uses training data to search for

matching strategies minimizing the appearance changes (intra-class variations), while highlighting

distinctive properties of the target (maximising inter-class variation).
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Feature-modelling approaches concentrate on feature representation which should be invariant

to pose and camera changes. These approaches usually assume a priori an appearance model,

focusing on designing novel features for capturing the most distinctive aspects of an individual.

However, designing novel features, we need to look for a trade-off between their discriminative

power and invariance through cameras. This task is particularly hard, especially, as this trade-off

varies from data to data.12

Metric learning approaches are often the one that achieve the best performance in re-identifying

people. These approaches learn a distance function that transfers the feature space from one camera

to the other such that relevant dimensions are emphasized while irrelevant ones are discarded.

Although, this transfer function boosts the recognition accuracy, it is usually camera pair dependent

and requires large training data (hundreds of annotated image pairs with the same individual) for

each camera pair. This might be unattainable in a large camera network. Moreover, metric learning

can lose the performance while directly computing the difference between two images (feature

vectors) without aligning them first.

Most of appearance-based approaches are usually evaluated using cropped images that are

manually extracted from images taken at eye level (no significant perspective changes). In this

case slight pose changes can usually be approached by adopting perceptual principles of symmetry

and asymmetry of the human body.2 The extracted features are then weighted using the idea that

features closer to the bodies’ axes of symmetry are more robust against scene clutter. However

in a real world scenario a person pose and a camera view can change significantly due to serious

perspective changes, thus having noticeable impact on recognition performance.

In this paper we address the re-identification in a real camera network, where pose and camera

viewpoint change significantly. To improve alignment and minimize perspective changes, we offer
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a simple but efficient affine transformation using 3D scene information.

The taxonomy of appearance-based techniques distinguishes the single-shot and the multiple-

shot approaches. The former class extracts appearance using a single image,3, 13, 14 while the lat-

ter employs multiple images of the same object to obtain a robust representation.2, 4, 10, 15, 16 The

main idea of multiple-shot approaches is to take advantage of several frames for extracting a more

reliable representation.15, 17, 18 Although multiple-shot approaches employ several frames for gen-

erating the signature, in the end they usually produce a single (averaged) representation ignoring

the possible pose and view-angle changes that can occur while tracking the target in a single cam-

era. Those approaches either select more frequent features or blend the appearance by averaging

features. Color-soft19 computes color histograms from segmented head, torso and legs. Color vari-

ations across cameras are reduced by employing soft-binning, where each pixel might contribute

to several bins based on its proximity to the center of each bin. Multiple frames are incorporated

into the model by averaging soft-binned histograms. On the contrary, we propose first to estimate

the target pose in each frame and then split the trajectory w.r.t. the estimated pose. Instead of

generating a single averaged signature per subject, we propose to compute multiple signatures for

each trajectory that reflect multiple appearance of the target as a function of its changing pose.

Given two images/video chunks with subjects and their estimated poses, it is highly desirable

to develop the strategy that could exploit pose information for improving the matching accuracy. In

our previous work,20 we proposed to employ an Epanechnikov kernel as a function of orientation

that assigns higher weights to features corresponding to the frontal appearance. In this work instead

of having a hand-crafted weighting strategy, we learn a similarity function that consists of a pool

of metrics, each one learned to match a specific pair of poses. In this paper we propose to train our

model using only a single camera. We believe that this avoids over-fitting the metric to the given
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camera pair. Once the metric pool is learned, it can be applied to any camera pair. While matching

two images, we select the proper metric based on automatically estimated pose of the target image

and of the record image in the gallery (database). The selected metric reflects the transformation

of the feature space between two given poses, thus improving matching. The proposed solution

showed to be effective and scalable. In summary, this paper makes the following contributions:

• We eliminate perspective distortions by applying a simple affine transformation (rotation) on

cropped images containing a person of interest. This transformation is based on 3D scene

information (section 3).

• We propose a pose estimation algorithm that uses 3D scene information and motion of the

target. Pose is further used for splitting the trajectory into the reliable video chunks, each one

with a uniform pose distribution. Those video chunks are used for retrieval that is improved

by employing the pose cues (see section 4).

• Finally, instead of learning a single metric that tackles all difficulties related to appearance

changes, we focus on learning a metric pool that tackles pose changes. This pool consists

of metrics, each one learned to match a specific pair of poses, not being limited to a specific

camera pair. Automatically estimated poses determine the proper metric, thus improving

matching. We show that metrics learned using only a single camera can significantly improve

the matching across the whole camera network, providing a scalable solution (see section 5).

The outline of the paper is the following. An overview of our approach is presented in section 2.

Sections 3 and 4 focus on target alignment and pose estimation, respectively. Metric learning is de-

tailed in section 5. We validate all steps of our approach in section 6 before discussing perspectives

and concluding.
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Fig 1: Person re-identification using pose priors. Input: video stream, target detections, trajec-
tory and 3D camera information. Processing: target alignment; pose estimation and pose-driven
clustering. Retrieval: distance minimisation using the previously learned metric pool.

2 Overview of the approach

The input of our approach is a video stream with already detected person of interest and its trajec-

tory (see figure. 1). Based on the motion of the target (i.e. trajectory) and 3D scene information (i.e.

camera calibration), in every frame we align person detections (see section 3) and estimate its pose

orientation (see section 4). Further, we split the video into the chunks with a uniform pose distri-

bution. We believe that trajectory parts with uniform pose contain reliable information that further

can be used for retrieval, e.g. in figure 1 we split the trajectory into two with estimated back pose

and side pose, generating an appearance representation as a Multiple Signature: MS = {S1, S2},

where S1 and S2 correspond respectively to back pose and side pose signatures. Estimated pose of

the target signature together with the estimated pose of a matching candidate determine the proper

metric for computing the similarity between two video chunks/images. For example for matching

side and back pose we will use a different metric than for matching side and front pose. The met-

ric is selected from a metric pool beforehand learned using a single camera (see section 5). This

metric pool consists of metrics, each one learned to match a specific pair of poses. Final retrieval

is based on minimizing distance among all target signatures and the corresponding signature in the
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database.

3 Target alignment

Changing viewpoint in a network of cameras might significantly distort the visual appearance of

a person. This problem has a direct impact on the re-identification accuracy. Eliminating per-

spective distortions in an image region containing the target is often called image rectification.21

Although employing rectification methods gives satisfactory results in pedestrian detection tasks,

we observed that the extracted homography between the image and the ground planes can still

produce significant distortions in the texture inside the target appearance. As a result, instead of

employing rectification, we propose to minimize perspective distortions by rotating the cropped

image with the person by angle α. α is extracted using 3D scene information, by mapping the

vector orthogonal to the ground plane living in real world coordinates to the vertical of a given

image. This mapping is achieved by employing the calibration information of the camera (i.e. we

employ Tsai calibration.22).

We compute rotation angle α in the following way. Given a detected person (a rough bounding

box around the person, see figure 2(b)), we select the center point of the detection (point C).

Having a pixel location of this point in the image plane (xic, y
i
c), we compute its corresponding

point in the world coordinate system (xrc, y
r
c) using calibration information and a fixed height of

a person h = 1.7 m. From this point, we can easily compute the orthogonal to the ground plane

in the world coordinate system meeting the head point (xrh, y
r
h) that has its corresponding location

(xih, y
i
h) in the image plane (point H). The rotation angle can be computed by

α = arctan

(
xih − xic
yic − yih

)
. (1)
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(a) trajectory (b) cropped (c) rotated
Fig 2: Affine transformation of the target image: (a) trajectory of the target (color of the trajectory
illustrates the reliability of the detected pose; see section 4.2 for details); (b) the cropped image
obtained by the detection algorithm; (c) the rotated image.

Figure 2(c) illustrates the result of the rotation.

4 Pose estimation

This section introduces the method for extracting the pose by using 3D scene information (Tsai

calibration22) and the motion of the target (section 4.1). Using pose, we split the trajectory into

video chunks with a uniform pose (section 4.2) and generate multiple signatures for the trajectory,

one signature for each pose.

4.1 Pose orientation

Given detection results for n frames, we compute a set of central points Cr =

{(xr
c,1, y

r
c,1), . . . , (x

r
c,n, y

r
c,n)} that lie in the real world coordinates system and correspond to the

center of the detections in the image plane. Using calibration information, we extract the position

of the camera projected on the ground plane (xr
cam, yr

cam). Let us define the motion vector as a

difference between two consecutive real world location coordinates of the target. For each position

k 2 [2, n] on the trajectory, motion vector mk can be expressed as

mk =
⇥
xr

c,k � xr
c,k�1, y

r
c,k � yr

c,k�1

⇤
, (2)
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Fig 2: Affine transformation of the target image: (a) trajectory of the target (color of the trajectory
illustrates the reliability of the detected pose; see section 4.2 for details); (b) the cropped image
obtained by the detection algorithm; (c) the rotated image.

Figure 2(c) illustrates the result of the rotation.

4 Pose estimation

This section introduces the method for extracting the pose by using 3D scene information (Tsai

calibration22) and the motion of the target (section 4.1). Using pose, we split the trajectory into

video chunks with a uniform pose (section 4.2) and generate multiple signatures for the trajectory,

one signature for each pose.

4.1 Pose orientation

Given detection results for n frames, we compute a set of central points Cr =

{(xrc,1, yrc,1), . . . , (xrc,n, yrc,n)} that lie in the real world coordinates system and correspond to the

center of the detections in the image plane. Using calibration information, we extract the position

of the camera projected on the ground plane (xrcam, y
r
cam). Let us define the motion vector as a

difference between two consecutive real world location coordinates of the target. For each position

k ∈ [2, n] on the trajectory, motion vector mk can be expressed as

mk =
[
xrc,k − xrc,k−1, y

r
c,k − yrc,k−1

]
, (2)
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Fig 3: Sample aligned images for different orientations. Below for each picture its estimated ✓ is
provided.

Pose orientation ✓k is computed as a dot product between viewpoint vector vk and motion vector

mk.

✓k = arccos

✓
vk · mk

|vk||mk|

◆
. (4)

Employing this simple but effective method, we obtain sufficiently accurate information for esti-

mating the pose. This information is used to select the data for training a metric pool for pose

changes (see section 5) and then it can be used to select the proper metric while matching different

poses.

Figure 4(a) presents ✓ values for the given trajectory (figure 4(d)) and figure 3 shows sample

images for different orientation angles.

4.2 Orientation-driven clustering

Figure 4(a) illustrates ✓ values w.r.t. time. To minimize noise we smooth the data by

✓s
k =

k+zX

l=k�z

✓l

2z + 1
, (5)

where z is a smoothing parameter (we set z = 5 in experiments). This operation provides us more

reliable pose orientation cues (figure 4(b)).

Further, we split the trajectory into the set of chunks (clusters) to obtain multiple appearances

of the target with the reliably estimated orientation. By detecting significant changes in orientation,
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Fig 3: Sample aligned images for different orientations. Estimated θ is provided below each
picture.

where k is the frame number. We also define view point vector vk as a difference between the real

world location coordinates of the target in the scene and the real world location coordinates of the

camera, both projected on the ground plane

vk =
[
xrcam − xrc,k−1, y

r
cam − yrc,k−1

]
. (3)

Pose orientation θk is computed as a dot product between viewpoint vector vk and motion vector

mk.

θk = arccos

(
vk ·mk

|vk||mk|

)
. (4)

Employing this simple but effective method, we obtain sufficiently accurate information for esti-

mating the pose. This information is used to select the data for training a metric pool for pose

changes (see section 5) and then it can be used to select the proper metric while matching different

poses. Figure 4(a) presents θ values for the given trajectory (figure 4(d)) and figure 3 shows sample

images for different orientation angles.
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Fig 4: Orientation driven trajectory clustering: (a) original pose orientation ✓ estimated from the
video; (b) the result of the smoothing operation; (c) our control derivative function; (d) the relia-
bility of the trajectory (red color indicates low reliability, while blue stands for the highest).

we believe that we can detect significant changes in the appearance. We estimate the pose changes

using the control derivative function �k defined as

�k = max
l=k�z...k+z

d✓s
k(t + l)

dt
. (6)

We use this function to measure the reliability of the orientation ✓. We assume that peaks in � (see

figure 4(c)) and their neighbourhoods might provide unreliable information. Figure 4(d) illustrates

the trajectory and its reliability. We can notice that the trajectory is unreliable during the pose

change (the color red indicates low reliability, while blue – the highest). Frames with estimated

unreliable orientation (� > 10) are removed from the trajectory, determining gaps in the trajectory,

thus clustering it into the multiple appearances (see the dashed line in figure 4(c)). Each appearance

9

Fig 4: Orientation driven trajectory clustering: (a) original pose orientation θ estimated from the
video; (b) the result of the smoothing operation; (c) our control derivative function; (d) the relia-
bility of the trajectory (red color indicates low reliability, while blue stands for the highest).

4.2 Orientation-driven clustering

Figure 4(a) illustrates θ values w.r.t. time. To minimize noise we smooth the data by

θsk =
k+z∑

l=k−z

θl
2z + 1

, (5)

where z is a smoothing parameter (we set z = 5 in experiments). This operation provides us more

reliable pose orientation cues (figure 4(b)).

Further, we split the trajectory into the set of chunks (clusters) to obtain multiple appearances of

the target with the reliably estimated orientation. We believe that we can detect significant changes

in the appearance, by detecting abrupt changes in orientation. We estimate the pose changes using
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the control derivative function δk defined as

δk = max
l=k−z...k+z

dθsk(t+ l)

dt
, (6)

where t reflects frame/time change. δk can be seen as a speed of a pose change. We use this function

to measure the reliability of the orientation θ. We assume that peaks in δ (see figure 4(c)) and their

neighbourhoods might provide unreliable information. Figure 4(d) illustrates the trajectory and its

reliability. We can notice that the trajectory is unreliable during the pose change (the color red

indicates low reliability, while blue – the highest). Frames with estimated unreliable orientation

(δ > 10) are removed from the trajectory, determining gaps in the trajectory, thus clustering it into

the multiple appearances (see the dashed line in figure 4(c)). Each appearance cluster is labeled

with its mean orientation (e.g. the person in figure 4(d) was separated into two clusters, labeled

with orientation 187◦ and 101◦). For each cluster we compute the appearance representation –

signature that is equipped with its estimated pose orientation (θ). The next step is to learn the

matching strategy that employs pose information.

5 Metric pool

Given two signatures with estimated poses of the subject, we develop the matching strategy that

exploits pose information. This strategy consists in generating a pool of metrics, each one learned

to match a specific pair of poses. For learning metrics we employ Mahalanobis-like metrics, which

have recently attracted a lot of research interest in computer vision.
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5.1 Mahalanobis metric

As state of the art we can consider KISS metric,5 Large Margin Nearest Neighbor Learning

(LMNN),8 Information Theoretic Metric Learning (ITML)6 and Logistic Discriminant Metric

Learning (LDML).7 These machine learning algorithms learn a distance or similarity metric based

on the class of Mahalanobis distance functions. Having data points xi, xj ∈ Rd, we are looking

for a similarity function, in which similar data points should be closer than dissimilar points. For

training we need a similarity label yij : yij = 1 for similar pairs, i.e. if the samples share the

same class label (yi = yj) and yij = 0 otherwise. Mahalanobis-like metric measures the squared

distance between two data points xi and xj:

d2M(xi, xj) = (xi − xj)TM(xi − xj), (7)

where M ≥ 0 is a positive semi-definite matrix. Note that label yi for xi is not usually needed

for training but the pair-wise relation (label yij). In the results, training data is given as a set of

positive and negative pairs.

5.2 Learning a pose-change metric

Let us assume that the subject’s pose can be described by the orientation angle between the motion

vector of the target and the viewpoint vector of the camera (angle θ – see section 4). Thus, for

each image we have given the pose as the angle in the range of [0◦, 360◦). We divide this range

into n bins, i.e. pose p ∈ P , where |P | = n. Given n bins of estimated poses, the idea is to learn

metrics that stand for transfer functions between pairs of two poses. In the result, the metric pool

will consist of
(
n
2

)
metrics, each one learned to match specific pair of poses. Note that bins might
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not be necessary continues, e.g. images with poses θ = 90◦ and θ = 270◦ can be assigned to the

same bin due to symmetry by vertical flipping.

Learning is performed in the following way. For each pair of poses, we automatically select

subjects that support a given pose transfer. In experiments we illustrate that this transfer can be

learned using a single camera to avoid including any color transfer. In the result, the learned metric

can be applied to uncorrelated camera pair (see section 6).

While learning metrics, we follow a well known scheme based on image pairs, containing two

desired poses of the same target. Let us assume that we want to learn the metric for the pose change

from pose a to pose b. In this case yij = 1 only if it is the same subject (yi = yj) and only if it

supports the pose change (pi = a ∧ pj = b), yij = 0 otherwise.

For learning metrics we employ the previously mentioned metric learning tools.5–8 As the

learning is performed offline, the time complexity is not the main concern. Usually metric learning

approaches rely on an iterative optimization scheme which can get computationally expensive for

large datasets. In contrast to these methods, KISS metric is a non-iterative method that builds on

a statistical inference perspective of the space of pairwise differences.5 In the result, it is orders

of magnitudes faster than comparable metric learning approaches. Thus, if the reader is interested

in training on a large dataset we recommend the KISS metric.5 In experiments we compare the

performance of all these approaches.

The set of learned metrics stands for the metric pool. As we employ images only from a single

camera, the metric pool is not dependent on a camera pair. Thus, once the pool for matching poses

is learned, it can be applied to any pair of cameras.

While matching two images given from different (or the same) camera, we first align subjects

and estimate their poses. Having poses, we select the corresponding metric from the metric pool.
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This metric is used to compute the similarity between given subjects that is used in the final rank-

ing. As the selected metric reflects the transformation of the feature space between two given

poses, it improves the recognition accuracy.

6 Experimental Results

In this section we validate our approach on two datasets: VIPER23 and SAIVT-SOFTBIO.19

VIPER dataset has particularly been designed for evaluating algorithms handling pose changes and

contains a single image per subject per camera. SAIVT-SOFTBIO is a good dataset for evaluating

multiple-shot approaches. It provides a highly unconstrained environment reflecting a real-world

scenario. We selected this dataset as it allows us to evaluate all steps of our approach and show

the performance impact of each step. The results are analysed in terms of recognition rate using

a standard re-identification measure that is the cumulative matching characteristic curve (CMC).23

The CMC curve represents the expectation of finding the correct match in the top n matches.

6.1 Viper dataset23

VIPER23 dataset contains two views of 632 pedestrians. Each image is cropped and scaled to be

128 × 48 pixels. Images of the same pedestrian have been taken from different cameras, under

different viewpoints, poses and lighting conditions. The primary motivation of Gray et al.23 was

to propose a dataset which can be used for learning and evaluation of the viewpoint invariant

approaches. Thus, the dataset contains pairs which viewpoint angle changes from 45◦ up to 180◦.

The quality of the images varies. The video was compressed before processing and as a result, the

images have spatially sub-sampled chrominance channels, as well as some minor interlacing and

compression artifacts.
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In the ground truth for each image we have given the estimated θ and we found that 240 image

pairs support transfer from θ = 0◦ to θ = 90◦. In the result we propose the following evaluation

setup.

6.1.1 Appearance model and learning

Select randomly 120 pairs from all 632 pairs for learning metric M (simulating case of missing

pose information) and select randomly 120 pairs from 240 pairs supporting the transfer for learning

metric Mpose. The remaining 120 pairs from the set of 240 we use as the testing set. From each

image we extract a dense grid of rectangular patches with 8×16 size and 8 pixels step in horizontal

and vertical direction. Each patch is represented by mean values computed from colour LAB

channels and a HOG descriptor. Learning is performed using KISSME framework5 that provides

several metric learning tools; KISS metric (KISSME),5 Mahalanobis distance with similar pairs

(MAHAL), Information Theoretic Metric Learning (ITML)6 and Large Margin Nearest Neighbor

Learning (LMNN).8 IDENTITY label corresponds to the diagonal metric M that is the Euclidean

distance (L2 metric). We repeat experiments 10 times to obtain reliable statistics.

6.1.2 Results

Figure 5 illustrates the averaged CMC curves for different metric approaches. Metrics that have

been learned on images that support the transfer are denoted by index p. From the results, it is

apparent that all metric learning approaches consistently improve the performance while being

learned using the transfer data. We can notice that the performance increases when metrics are

learned on more specific data. Applying our pose estimation algorithm we can automatically select

the training data and learn the metrics for particular pose changes, thus generating the metric
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Fig 5: Person re-identification driven by the estimated pose: CMC curves obtained on VIPER
dataset. Metric learning approaches with index p correspond to learning using pose orientation
(Mpose).

pool. In this experiment we were learning a pose transfer using 2 cameras. However, as we have

mentioned before, we propose to learn the metric pool using only a single camera, providing a

scalable solution. This case is evaluated in the next section as well as all steps of our approach.

6.2 SAIVT-SOFTBIO dataset19

This dataset consists of 152 people moving through a network of 8 cameras. Subjects travel in an

uncontrolled manner, thus most of subjects appear only in a subset of the camera network. This

provides a highly unconstrained environment reflecting a real-world scenario. In average, each

subject is registered by 400 frames spanning up to 8 camera views in challenging surveillance

conditions (significant illumination, pose and viewpoint changes). Provided annotations given

by coarse bounding boxes indicate locations of the subjects in each frame. The centers of these

bounding boxes build trajectories of the subjects. Thanks to trajectories and 3D scene information

we can evaluate the target alignment and the pose estimation algorithm.
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6.2.1 Appearance model and learning

Every cropped and aligned image is scaled into a fixed size window of 128 × 64 pixels. A set of

rectangular patches is produced by shifting 8×16 regions with a 8 pixels step. From each patch, we

extract RGB colour and HOG histograms. We minimise colour dissimilarities caused by camera

illumination changes by applying histogram equalization to each color channel. By this operation

we try to avoid a dependency of our metric on the camera colour spectrum.

For learning a metric we selected the camera 5. We divide pose orientation into n = 3 bins: the

front pose, the back pose and the left side pose (right side is flipped to the left). The centers of bins

are 0◦ (front), 180◦ (back) and 270◦ (side). The image is classified in one of the poses based on the

nearest neighbour strategy. We learn a transfer from side (θ = 270◦) to back pose (θ = 180◦) that

is supported by the sufficient number of subjects (37) and images (279) coming from only camera

5.

By using a single camera we want to avoid including any colour transfer in our metric, thus

producing independent to camera pair the metric pool. Training data was obtained using our target

alignment and pose estimation algorithms (see section 3).

For learning we again used KISSME framework5 employing KISS metric (KISSME),5 Ma-

halanobis distance with similar pairs (MAHAL), Information Theoretic Metric Learning (ITML),6

Logistic Discriminant Metric Learning (LDML)7 and Large Margin Nearest Neighbor Learning

(LMNN).8 For testing we randomly select a single image from each camera for each subject that

supports the given pose change (single-shot case). All camera pairs are evaluated using 50 subjects.

The procedure is repeated 10 times to obtain reliable statistics.
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(a) Cam 4 to 3 (b) Cam 4 to 8

(c) Cam 5 to 3 (d) Cam 5 to 8

Fig 6: Person re-identification by pose change metric: CMC curves obtained on the SAIVT-
SOFTBIO dataset on different camera pairs. The metric for the change from the side pose to the
back pose was learned using images from the camera 5.

a new appearance model, we need to look for a trade-off between its discriminative power and

invariance through cameras. This task is particularly hard, especially, as this trade-off varies from

data to data.12

6.2.3 Full chain evaluation

From the previous results it is apparent that learning a metric for the specific transfer improves the

recognition accuracy. In this section we evaluate all steps of our approach illustrating the impact

of each step on the recognition performance.
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Fig 6: Person re-identification by pose change metric: CMC curves obtained on the SAIVT-
SOFTBIO dataset on different camera pairs. The metric for the change from the side pose to the
back pose was learned using images from the camera 5.

6.2.2 Metric scalability

Fig. 6 illustrates the results of re-identification on different camera pairs. From the results, it is

clear that learning a metric for the specific pose change improves the recognition for all camera

pairs. Each metric learning method shows improvement w.r.t. the L2 metric (IDENTITY). This

result is very promising, especially in Fig. 6(a,b) where we can notice the improvement even when

the camera pair does not contain the training camera 5.

From Fig. 6(c,d) it seems that the improvement in matching is higher when the testing cam-
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era pair contains the camera 5. We believe this is due to the metric dependency on the training

data (e.g. the selected model is dependent on the features available in the camera 5). In the re-

sult, while learning a metric pool we should properly select the training data to obtain sufficiently

general metrics. Alternative solution would be to represent the image by such features that are

independent on the camera parameters. Unfortunately, more invariant descriptor has usually less

discriminative power. Designing a new appearance model, we need to look for a trade-off between

its discriminativity and invariance through cameras. This task is particularly hard, especially, as

this trade-off varies from data to data.12

Finally, for illustrating the difference between learning a metric within a single camera and

across different cameras, we set the following experiment. We used the previously learned metric

using 37 subjects and 279 images coming from camera 5 and we additionally learned a metric using

40 subjects and images from camera 5 and camera 8. For learning both metrics we used KISS

metric (KISSME).5 We evaluated both metrics matching randomly selected 10 subjects, which

were not included in training data. Averaged CMC curves of 10 experiments are illustrated in

figure 7. We can notice that learning a metric across different cameras gives better re-identification

accuracy. Nevertheless, for training the metric across different cameras we need to annotate the

same subjects appearing in different cameras. Note, that training within a single camera can be

automatic if cameras are calibrated and a short-term tracker is available.

6.2.3 Full chain evaluation

From the previous results it is apparent that learning a metric for the specific transfer improves the

recognition accuracy. In this section we evaluate all steps of our approach illustrating the impact

of each step on the recognition performance.
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Fig 7: Person re-identification by metrics learned using only images from camera 5 (KISSME(5,5))
and using images from two cameras 5 and 8 (KISSME(5,8)).

(a) nAUC = 0.71 (b) nAUC = 0.74

(c) nAUC = 0.79 (d)

Fig 7: Evaluation of target alignment and pose clustering on 56 camera pairs of SAIVT-SOFTBIO
dataset; (a)-(c) 3D bar charts and their top views illustrating the recognition accuracy as a function
of rank and the camera pair; we provide averaged nAUC values that are a weighted areas under
CMC curves; (d) presents averaged CMC curves over all 56 pairs of cameras.

First we run experiments on the full SAIVT-SOFTBIO dataset without employing any metric

learning approach. As SAIVT-SOFTBIO consists of several cameras, we display the CMC results

using 3D bar-charts (see figure 7). The heights of bars illustrates the recognition accuracy as a

function of the camera pair and rank. The results are displayed for 56 camera pairs (i.e. having

8 cameras we actually can produce 56 CMC bar series that present recognition accuracy for each

camera pair) and first 25 ranks. We also colour the CMC bars with respect to recognition accuracy

and display it as a top-view image of 3D bar (left side of each 3D bart chart). In the result we can

see that re-identification accuracy might be strongly associated with a particular pair of cameras

(similar/non-similar camera view, resolution, the number of registered subjects). For example we

can notice high recognition accuracy for rows 7-14 that actually correspond to results of querying

18

Fig 8: Evaluation of target alignment and pose clustering on 56 camera pairs of SAIVT-SOFTBIO
dataset; (a)-(c) 3D bar charts and their top views illustrating the recognition accuracy as a function
of rank and the camera pair; we provide averaged nAUC values that are a weighted areas under
CMC curves; (d) presents averaged CMC curves over all 56 pairs of cameras.

First we run experiments on the full SAIVT-SOFTBIO dataset without employing any metric

learning approach. As SAIVT-SOFTBIO consists of several cameras, we display the CMC results

using 3D bar-charts (see figure 8). The heights of bars illustrates the recognition accuracy as a
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function of the camera pair and rank. The results are displayed for 56 camera pairs (i.e. having

8 cameras we actually can produce 56 CMC bar series that present recognition accuracy for each

camera pair) and first 25 ranks. We also colour the CMC bars with respect to recognition accuracy

and display it as a top-view image of 3D bar (left side of each 3D bart chart). In the result we can

see that re-identification accuracy might be strongly associated with a particular pair of cameras

(similar/non-similar camera view, resolution, the number of registered subjects). For example we

can notice high recognition accuracy for rows 7-14 that actually correspond to results of querying

camera 2 in which only few subjects were registered (29 of 152), thus high recognition accuracy

is due to a small number of subjects. In the rest of cameras the number of subject is more bal-

anced (about 100 subjects per camera). In this figure we illustrate the impact of each step of our

algorithm on the re-identification accuracy. BASELINE corresponds to signatures extracted using

randomly selected N = 10 subsequent frames. Labels TA, MS correspond respectively to the

given contributions: Target Alignment (section 3) and pose orientation clustering into Multiple

Signature (section 4.2). From the results it is clear that each step of the algorithm has a significant

impact on the performance. We consistently increase the recognition for all ranks employing target

alignment and orientation-driven pose clustering (figure 8(d) illustrates averaged CMC curves over

all 56 camera pairs). We can notice that the pose orientate clustering has a higher performance im-

pact than target alignment (i.e. for r = 1 we can notice an increase of about 9% in the recognition

accuracy).

Finally, we show performance of our full framework employing the metric pool. We use the

metric learned on camera 5 and compare the performance with Color-soft19 and our previous ap-

proach20 on matching subjects from camera 5 to camera 8. Figure 9 shows clearly that our approach

significantly outperforms state of the art performance.
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Fig 9: Performance comparison while matching signatures from camera 5 with signatures from
camera 8: TA+MS+W20 and COLOR-SOFT.19 TA+MS+POSE corresponds to our approach while
employing the proposed processing chain: target alignment, pose estimation, pose orientation clus-
tering and the metric pool.

7 Conclusion and perspectives

This paper tackles several issues related to the person re-identification employed in a real world

scenario. We proposed to use the motion of the target and 3D information for: (1) eliminating

perspective distortions in the target appearance by aligning cropped images w.r.t. the camera view;

(2) estimating target poses and splitting the trajectory into video chunks with a uniform pose; (3)

learning a general metric pool to match a specific pair of poses. We learned the transfer functions

employing Mahalanobis metrics using only a single camera. This allowed us to apply the metric to

uncorrelated camera pairs, providing the scalable solution for large camera networks. Experiments

on various datasets and various camera viewpoints demonstrated that our method consistently im-

proves the re-identification accuracy. In future, we will further explore the generalization capability

of the pose-driven metric pool. Different training schemes will be tested to obtain more general

metrics. Additionally, we plan to analyze the correlation between the number of bins in the metric

pool and the re-identification accuracy, while employing a finer mapping from the image to the

pose using a depth sensor.

21



Acknowledgments

This work has been supported by PANORAMA, CENTAUR and MOVEMENT European projects.

References

1 S. Bak, E. Corvee, F. Bremond, and M. Thonnat, “Person re-identification using spatial co-

variance regions of human body parts,” in AVSS, (2010).

2 M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani, “Person re-identification

by symmetry-driven accumulation of local features,” in CVPR, (2010).

3 X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu, “Shape and appearance context

modeling,” in ICCV, (2007).

4 L. Bazzani, M. Cristani, A. Perina, M. Farenzena, and V. Murino, “Multiple-shot person

re-identification by hpe signature,” in ICPR, (2010).

5 M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, “Large scale metric

learning from equivalence constraints,” in CVPR, (2012).

6 J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-theoretic metric learning,”

in ICML, (2007).

7 M. Guillaumin, J. Verbeek, and C. Schmid, “Is that you? metric learning approaches for face

identification,” in ICCV, (2009).

8 K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for large margin

nearest neighbor classification,” in NIPS, (2006).

9 M. Dikmen, E. Akbas, T. S. Huang, and N. Ahuja, “Pedestrian recognition with a learned

metric,” in ACCV, (2010).

22



10 W.-S. Zheng, S. Gong, and T. Xiang, “Person re-identification by probabilistic relative dis-

tance comparison,” in CVPR, (2011).

11 W. Li and X. Wang, “Locally aligned feature transforms across views,” in CVPR, (2013).

12 M. Varma and D. Ray, “Learning the discriminative power-invariance trade-off,” in ICCV,

(2007).

13 D. Gray and H. Tao, “Viewpoint invariant pedestrian recognition with an ensemble of local-

ized features,” in ECCV, (2008).

14 U. Park, A. Jain, I. Kitahara, K. Kogure, and N. Hagita, “Vise: Visual search engine using

multiple networked cameras,” in ICPR, (2006).

15 N. Gheissari, T. B. Sebastian, and R. Hartley, “Person reidentification using spatiotemporal

appearance,” in CVPR, (2006).

16 B. Prosser, W.-S. Zheng, S. Gong, and T. Xiang, “Person re-identification by support vector

ranking,” in BMVC, (2010).

17 S. Bak, G. Charpiat, E. Corvee, F. Bremond, and M. Thonnat, “Learning to match appear-

ances by correlations in a covariance metric space,” in ECCV, (2012).

18 O. Oreifej, R. Mehran, and M. Shah, “Human identity recognition in aerial images,” in CVPR,

(2010).

19 A. Bialkowski, S. Denman, S. Sridharan, C. Fookes, and P. Lucey, “A database for person

re-identification in multi-camera surveillance networks,” in DICTA, (2012).

20 S. Bak, S. Zaidenberg, B. Boulay, and F. Bremond, “Improving Person Re-identification by

Viewpoint Cues,” in AVSS, (2014).

23



21 Y. Li, B. Wu, and R. Nevatia, “Human detection by searching in 3d space using camera and

scene knowledge,” in ICPR, (2008).

22 R. Tsai, “An efficient and accurate camera calibration technique for 3d machine vision.,” in

CVPR, (1986).

23 D. Gray, S. Brennan, and H. Tao, “Evaluating Appearance Models for Recognition, Reacqui-

sition, and Tracking,” in PETS, (2007).

List of figure captions

Figure 1. Person re-identification using pose priors. Input: video stream, target detections, trajec-

tory and 3D camera information. Processing: target alignment; pose estimation and pose-driven

clustering. Retrieval: distance minimisation using the previously learned metric pool.

Figure 2. Affine transformation of the target image: (a) trajectory of the target (color of the tra-

jectory illustrates the reliability of the detected pose; see section 4.2 for details); (b) the cropped

image obtained by the detection algorithm; (c) the rotated image.

Figure 3. Sample aligned images for different orientations. Estimated θ is provided below each

picture.

Figure 4. Orientation driven trajectory clustering: (a) original pose orientation θ estimated from

the video; (b) the result of the smoothing operation; (c) our control derivative function; (d) the

reliability of the trajectory (red color indicates low reliability, while blue stands for the highest).
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Figure 5. Person re-identification driven by the estimated pose: CMC curves obtained on VIPER

dataset. Metric learning approaches with index p correspond to learning using pose orientation

(Mpose).

Figure 6. Person re-identification by pose change metric: CMC curves obtained on the SAIVT-

SOFTBIO dataset on different camera pairs. The metric for the change from the side pose to the

back pose was learned using images from the camera 5.

Figure 7. Person re-identification by metrics learned using only images from camera 5 (KISSME(5,5))

and using images from two cameras 5 and 8 (KISSME(5,8)).

Figure 8. Evaluation of target alignment and pose clustering on 56 camera pairs of SAIVT-

SOFTBIO dataset; (a)-(c) 3D bar charts and their top views illustrating the recognition accuracy

as a function of rank and the camera pair; we provide averaged nAUC values that are a weighted

areas under CMC curves; (d) presents averaged CMC curves over all 56 pairs of cameras.

Figure 9. Performance comparison while matching signatures from camera 5 with signatures from

camera 8: TA+MS+W20 and COLOR-SOFT.19 TA+MS+POSE corresponds to our approach while

employing the proposed processing chain: target alignment, pose estimation, pose orientation clus-

tering and the metric pool.
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