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Abstract. In this paper we present the Grid Scheduling Simulator (GSSIM), a comprehensive and advanced simulation tool for
distributed computing problems. Based on a classification of simulator features proposed in the paper, we define problems that can
be simulated using GSSIM and compare it to other simulation tools. We focus on an extension of our previous works including
advanced workload generation methods, simulation of a network with advance reservation features, handling specific application
performance models and energy efficiency modeling. Some important features of GSSIM are demonstrated by three diverse
experiments conducted with the use of the tool. We also present an advanced web tool for the remote management and execution
of simulation experiments, which makes GSSIM the comprehensive distributed computing simulator available on the Web.
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1. Introduction

Scheduling algorithms in distributed computing sys-
tems have been the subject of intensive research over
the last decade. However, research experiments eval-
uating and making comparative analysis of these al-
gorithms are often difficult to be conducted. This is
caused by many problems including, for example, dif-
ficulties in obtaining exclusive access to large-scale in-
frastructures for research purposes or the lack of cer-
tain functionalities of real resource management sys-
tems, such as advance reservation (AR). Furthermore,
emergence of new computing paradigms such as grids,
clouds, multi-core processing, etc. caused gaining im-
portance of various aspects of distributed computing,
for example virtualization and energy efficiency is-
sues. Therefore, due to diversity of distributed resource
management systems and a significant technical effort
needed to establish large-scale computing infrastruc-
tures, simulations are commonly used to evaluate can-
didate algorithms and architectures. However, most of
simulations have been developed for a specific pur-
pose, so that they cannot be re-used elsewhere. For
this reason, several generic simulation tools were in-
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ing and Networking Center, ul. Noskowskiego 10, 61-704 Poznań,
Poland. E-mail: Slawomir.Bak@inria.fr.

troduced such as SimGrid [6], GridSim [4], etc. Some
of these tools provide a good basis for implementation
and simulation of a wide range of algorithms. Nev-
ertheless, in most cases developers must implement
experiments by themselves using just the basic func-
tionality of simulators. In consequence, setting up an
experiment also requires a lot of work and is rarely ap-
plicative by other researchers.

To address these issues, we introduced the Grid
Scheduling Simulator (GSSIM) which provides an au-
tomated framework for the management of experi-
ments related to resource management in distributed
computing environments [17]. GSSIM achieves it
through a flexible design of architecture and interac-
tions between scheduling components, a possibility of
plugging scheduling algorithms into the simulated en-
vironment, modeling synthetic workloads and adopt-
ing real traces in popular formats, a configuration of
the computing infrastructure topology both on logical
and physical level, and many other features as further
described in detail.

The GSSIM framework is complemented by the por-
tal which enables online access to the simulator via
a user-friendly experiment editor, workload generator
and experiments repository. The rich web interface al-
lows executing the simulation experiments remotely,
provides access to workloads, resource descriptions
and implementations of algorithms, and enables in-

1058-9244/11/$27.50 © 2011 – IOS Press and the authors. All rights reserved
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teractive visualization of results. In this way, GSSIM
provides a comprehensive environment enabling re-
searchers to test resource management algorithms and
architectures, and to exchange not only workloads but
also results of experiments and implementations of al-
gorithms.

The remaining part of the paper is organized as fol-
lows. In Section 2 we propose a classification of sim-
ulator features and, on this basis, we present GSSIM
in comparison with other simulation tools. Section 3
provides the details of the specific features of GSSIM.
In particular, it discusses the simulated architecture,
introduces the workload management concept, ex-
plains how to incorporate a specific application perfor-
mance model into simulations, describes an extension
for flow-based simulation of network with advance
reservations, presents energy-efficiency modeling and
demonstrates an advanced web interface for remote
management of experiments. Section 4 presents exam-
ples of experiments that illustrate collecting, analysis,
and visualization of results. Final conclusions are given
in Section 5.

2. Simulation of distributed computing systems

A wide spectrum of distributed computing problems
may need simulations to analyze their properties and
possible solutions. Proper modeling of these problems
requires a number of features that must be provided by
simulation tools. In order to compare simulators with
respect to their features and supported distributed com-
puting problems, we summarize the popular schedul-
ing problems common in distributed computing sys-
tems in Section 2.1 as well as introduce a classifica-
tion of simulation features in Section 2.2. On this ba-
sis, available simulators are compared in Section 2.3
while summary of problems that can be simulated with
the use of GSSIM is presented in Section 2.4.

2.1. Scheduling problems

There is a large number of scheduling problems
studied in the literature for many years. Attempts to
classify and analyze them can be found in [2,31]. The
most important classes have been distinguished and
listed below.

On-line and off-line scheduling. In the former case,
at a certain point in time there is no information about
future jobs. The latter case assumes knowledge about
all jobs during scheduling.

Clairvoyant and non-clairvoyant scheduling. In
most of real situations exact job execution time is
unknown a priori. However, sometimes scheduling is
based on execution times given by users or estimated
on the basis of previous runs (a lot of algorithms
in scheduling theory assume knowledge of execution
times). These cases are referred as non-clairvoyant and
clairvoyant scheduling, respectively.

Time constraints. If job processing times are known
(or estimated), requirements concerning time, or time
constraints, can be used. The most common time con-
straints in literature include ready times (the earliest
job start time), due dates (preferable job completion
time) and deadlines (the latest job completion time).

Workload types. Depending on a distributed com-
puting infrastructure and scheduling algorithms to be
studied researchers may require diverse structures of
workloads. Classification of workloads and their main
properties are proposed in Fig. 1 and summarized be-
low.

• Parallelism. Single tasks may be sequential, par-
allel (running on multiple processors), distributed
(running on multiple nodes) and distributed cross-
domain (can run on machines in multiple admin-
istrative domains, or sites).

• Number of processors. According to the classi-
fication given in [8] tasks can be also divided
into rigid, moldable, and malleable ones. First two
types of task use a constant number of CPUs ei-
ther specified exactly in advance (rigid tasks) or
set at the beginning of task execution (moldable
tasks). Number of exploited processors by mal-
leable task may change during the runtime.

• Preemption. Tasks with preemption possibility
can be suspended during their execution and re-
sumed later on (possibly on another node). Non-
preemptive tasks must run until they finish. Oth-
erwise they must be restarted.

• Time dependencies. Tasks may contain time de-
pendencies to other tasks. If they have no depen-
dencies they are called independent tasks. Other-
wise, they are tasks with preceding constraints, or
simply workflows. In the literature various struc-
tures of workflows can be found such as chains,
trees, uniconnected activity networks, and general
(arbitrary).

• Number of tasks. Workloads may contain single
tasks submitted by specific users or allow submit-
ting multiple tasks by a single user, e.g., the so-
called parameter sweep jobs or workflows.



UNCORRECTED  P
ROOF

SPR ios2a v.2011/11/04 arttype:RA Prn:14/11/2011; 13:43 F:spr332.tex; VTEX/Andrius p. 3
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Fig. 1. Properties of workloads. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0332.)

Quality of service. One of important aspects of some
distributed systems such as Grids is lack of full control
over all resources. For this reason, one must take into
consideration the impact of local policies and other
users on results of scheduling and either manage jobs
in queues or use advance reservation techniques to de-
liver requested quality of service (QoS). In the first
case, start time is not guaranteed a priori and jobs
usually are waiting in queues. In the second case, re-
sources are leased, using advance reservation, for a cer-
tain period and users obtain information about a start
time of the reservation.

Space-shared and time-shared scheduling. Jobs can
be assigned to specific multiple processors and ma-
chines or scheduled and rescheduled in time. The
former is called space- while the latter time-shared
scheduling.

Adaptive scheduling. Scheduling problems can be
also classified in terms of their adaptation to chang-
ing conditions. Sorting from the least to the most adap-
tive case there are algorithms which do not assume
rescheduling at all, assume rescheduling before run-
time (when jobs are pending in a queue or an ad-
vance reservation for them is established), and runtime
rescheduling including suspending, resuming and mi-
grating jobs [19].

Heterogeneity of resources. In addition to proper-
ties of jobs and scheduling systems themselves, various
types of resources must be considered to provide a sim-
ulator applicable for large scope of scheduling prob-

lems. First of all, resources may be homogeneous or
heterogeneous. Homogeneous resources can be mod-
eled as identical processors, i.e. processors of the same
speed. Otherwise, for heterogeneous resources, the ex-
ecution time is usually set as proportional to different
fixed speed of particular processors (uniform proces-
sors). However, more complex dependencies between
resource properties and execution time are possible, for
instance, processing times of tasks on different proces-
sors can be arbitrary (unrelated processors).

Evaluation criteria. Significant number of criteria
can be applied to evaluate schedules. Among them
there are arbitrary global criteria such as makespan,
mean flow time, resource utilization, etc., and user-
specific criteria that can be defined for individual users.
Additionally, criteria related to cost, energy consump-
tion, reliability, etc., are gaining recently importance.

2.2. Simulation features

Due to the complexity and costs of building and
operating testbeds, extensive research has been con-
ducted in the area of computer-based simulation tools.
As a result, a wide variety of simulation tools emerged.
A comprehensive taxonomy for design of simulation
tools to model large and distributed systems has been
presented in [29]. However, to compare various simu-
lation tools more detailed classification of simulation
features is needed. In this section we propose a classi-
fication that includes a variety of aspects that should be
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Fig. 2. Essential features of distributed computing systems simula-
tions.

taken into consideration in a simulation of modern dis-
tributed computing systems. Most of these properties
are essential to simulate the aforementioned schedul-
ing problems. The summary of features of distributed
computing simulators is illustrated in Fig. 2 and ex-
plained in more detail below.

• Simulated architecture. Simulation tools may dif-
fer in terms of architectures of modeled systems
as well as their levels of details. The logical ar-
chitecture of distributed systems may assume cen-
tralized control of resources, hierarchical topol-
ogy of schedulers or fully distributed models. In
addition, the physical topology may span from
computing nodes through racks and clusters up to
whole data centers or geographically distributed
grids and clouds. Granularity of such topologies
may also differ from coarse-grained to very fine-
grained modeling single cores, memory hierar-
chies and other hardware details. Ideally, simu-
lation tools should provide the user with enough
flexibility in defining system architecture and hi-
erarchy of resources (including both physical and
logical structure).

• Simulated objects. Simulation environment ought
to enable, apart from simulation of resource com-
ponents, modeling the behavior of other dis-
tributed computing entities. Simulations may in-
clude models of various distributed computing
entities. One of the most important element of
simulation is workload which may be taken from
real systems or generated synthetically. Workload
may contain jobs ranging from single sequential
jobs, through parallel and distributed jobs, up to
the whole workflows containing time dependen-
cies between jobs. Workload types and elements

are summarized in Fig. 1 and discussed in previ-
ous subsection. More detailed simulations of jobs
may require to model application performance
by taking into account a lot of factors that af-
fect application execution, e.g., processing unit
architecture, application characteristics, and input
data. Besides complex information about simu-
lated hardware (concerning architecture, charac-
teristics, state, energy profile) and network (with
different network models), a simulation tool may
allow performing specific actions on resources,
for instance change their states or support advance
reservation (AR). It is also important to permit
experimental studies that involves management
of large amounts of distributed data as well as
to model the dynamic nature of distributed envi-
ronments by handling different resource events.
Modern simulation tools may also support aspects
that gained special attention recently, in particular
virtualization and energy-aware techniques.

• Results of the simulation. The goal of each simu-
lation run is to provide a set of results that allow
to evaluate a specific distributed computing sys-
tem or scheduling method. These results may in-
clude: application performance metrics (e.g., ex-
ecution time, flow time, waiting time, completion
time), resource usage, cost, network performance,
data management performance, energy consump-
tion and thermal effects caused by computations.

• User interface. The user interface determines how
the user interacts with the simulation tool. The in-
terface is essential to achieve high experiment ex-
ecution automation and ease of use. First of all,
programming interface may differ between simu-
lators that may be delivered along with program-
ming libraries or more structured frameworks.
Usually frameworks allow to reduce the complex-
ity of the simulation environment and to enter
any modifications more conveniently. In addition
to programming interface, simulators may be ac-
companied with intuitive graphical user interface
that allows to define simulation parameters much
faster and easier than using ordinary configura-
tion files. These graphical interfaces may include
user friendly representation of simulation results
to facilitate the analysis of the distributed com-
puting system. Simulation tool may be also com-
plemented by the Web interface in order to al-
low remote experiments execution or/and provide
repository facilities.
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2.3. Comparison of simulation tools

Tables 1 and 2 present the results of a comparative
analysis of simulation tools based on the classification
of simulator features proposed in Section 2.2. Simula-
tion tools were selected to analysis based on their pub-
lications, availability, and list of features. Contents of
the tables are based on the recent publications concern-
ing the given tools. Moreover, all features were veri-
fied by experimental studies and a code analysis of the
available simulators (only DGSim was not available to
download at the time this survey was compiled).

GridSim [4] developed at the University of Mel-
bourne, is a toolkit that provides means for model-
ing and simulation of base components that constitute
parallel and distributed computing environments (grid
users, applications, resources, schedulers and resource
brokers) and for the study of the involved scheduling
algorithms. A flexible and extensible architecture al-
lows to modify components behavior or incorporate
new ones into the existing infrastructure. Thus, Grid-
Sim is commonly adopted by other simulation tools
that benefit from its core functionality.

Alea [13] developed at Masaryk University in Brno,
is the Grid and cluster scheduling simulator. Alea is
based on the GridSim toolkit and extends the original
basic functionality by introducing some innovative so-
lutions like, e.g., “on the fly” job reading that leads to a
better scalability. Simulator is able to cope with general
resource management problems like the heterogeneity
of jobs, resources, and the dynamic runtime changes. It
also supports also a specific workload format – Meta-
Centrum [22].

MaGate [11] simulator is a simulation-based im-
plementation for the MaGate scheduler. Its goal is to
provide a set of easy-to-use decentralized grid sched-
ulers (which are able to collaborate with external grid
services) and help researchers to study and evaluate
different scheduling algorithms/models and workflows
within various scenarios. Simulation process is sup-
ported by a grid network overlay simulator that pro-
vides services such as group communication and re-
source discovery.

SimGrid [6] is a joint project between the University
of Hawaii at Manoa, LIG Laboratory in Grenoble and
University of Nancy. It aims to provide core functional-
ities and facilities for the simulation of parallel and dis-
tributed applications in heterogeneous distributed en-
vironments. In particular, SimGrid provides program-
ming environments to support both researchers who
study their algorithms and need to run simulations

quickly as well as developers who can develop a real
distributed applications.

OptorSim [1,5] was initiated as part of the European
DataGrid project. It is a modular simulation frame-
work that enables users to perform experimental stud-
ies of optimisation strategies under different Grid con-
figurations. In particular, OptorSim allows the analysis
of various data replication algorithms and their impact
on the resource usage and job throughput in HEP data
grids.

DGSim [12] development led by the Delft University
of Technology, aims at system and workload model-
ing in grid resource management architectures. DGSim
focuses on automating experiment setup, management
and optimizing the overall simulation process. More-
over, it introduces the concepts of job selection pol-
icy and grid evolution, which models static changes
in the Grid infrastructure considered in the long-term
perspective. DGSim provides also some innovative so-
lutions concerning grid inter-operation, grid dynamics
and workload modeling.

GroudSim [25] toolkit is developed at University of
Innsbruck. It allows simulating both Grid and Cloud
computing. The main GroudSim features include: sim-
ulation of file transfers, the calculation of costs and
background loading. Event module supports resource
and network failures as well as recovery events affect-
ing these entities. Simulations can be easily extendable
by any kind of probability distribution package.

Conclusions. In this section we review several ap-
proaches to simulation of distributed computing sys-
tems based on the proposed classification of simulator
features. As shown in Table 2, most simulators basi-
cally focus on addressing specific problem areas. Since
their general goals are different, they vary in terms
of simulated architectures and usually allow model-
ing and simulating only subset of distributed comput-
ing entities. Although almost all of the aforementioned
toolkits are able to provide complete information about
simulated environment during the simulation, there is
a lack of tools that allow performing specific actions
on resources and in this way affecting their behavior.
Moreover, there is a very little support for applica-
tion performance modeling and incorporation of virtu-
alization techniques. Most of simulation tools handle
different resource events, mainly concerning resource
dynamics or resource failures. One should note that
among simulators discussed in this paper, simulation
of distributed data management is closely related to the
network modeling capability and thus, these features
are either both supported or both not. Several tools
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Table 1

Comparison of simulation tools according to the simulated objects

Tool/property Workload Application Hardware Network Data Events Virtualization

Input Model

GSSIM Real (SWF, GWF) Sequential, parallel, Performance Information Flow model File transfer Resource Yes

+ synthetic distributed, rigid, modeling (architecture, + AR dynamics

(generator) moldable, preemptive characteristics, + background + resource

jobs, workflows state, energy (FTA) traffic and network

profile) + control generator failures,

(energy management, recovery

state) + AR + security

GridSim Real (SWF, Sequential, parallel, No Information Flow, packet Data storage Resource Yes

user-defined distributed, rigid, (architecture, model + back- + file failures (CloudSim

– primitive) moldable, characteristics, ground traffic transfer (FTA) – separate

preemptive jobs state) + AR generator tool)

Alea Real (SWF, GWF, Sequential, parallel, No Information No No Resource No

Metacentrum) rigid, moldable jobs (architecture, failures

characteristics, state)

MaGate Real (GWF) Sequential, parallel, No Information No No Resource No

+ synthetic rigid, moldable job (architecture, dynamics

(primitive) characteristics)

generator)

SimGrid XML format (own) Sequential, parallel, Performance Information Flow, packet File transfer Resource No

distributed jobs, modeling (architecture, model + back- dynamics

workflows characteristics, state) ground traffic + resource

generator failures

OptorSim Text format (own) Sequential jobs No Information Flow model Data storage No No

(architecture, + background + file

characteristics, state) traffic generator transfer

DGSim Real (SWF, GWF) Sequential, parallel, No Information No No Grid dynamics No

+ synthetic distributed, rigid (architecture, + evolution

(generator) jobs, workflows characteristics, state) model

GroudSim Real (GWF) Sequential jobs No Information Flow model File transfer Resource and Yes

(architecture, network fail-

characteristics, state) ures, recovery
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ąk

etal./G
SSIM

–
a

toolfor
distributed

com
puting

experim
ents

7

1
52

2
53

3
54

4
55

5
56

6
57

7
58

8
59

9
60

10
61

11
62

12
63

13
64

14
65

15
66

16
67

17
68

18
69

19
70

20
71

21
72

22
73

23
74

24
75

25
76

26
77

27
78

28
79

29
80

30
81

31
82

32
83

33
84

34
85

35
86

36
87

37
88

38
89

39
90

40
91

41
92

42
93

43
94

44
95

45
96
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Table 2

Comparison of simulation tools according to the simulated architecture, user interface and results of the simulation

Tool/property Simulated architecture User interface Results

Physical Logical Programming Input Output On-line access

interface

GSSIM User-defined Centralized, Framework Comprehensive Text Remote experiment Application perfor-

decentralized, (introduced GUI – statistics, management, work- mance, resource usage,

hierarchical layers, plugins) experiment interactive load, scheduling network performance,

editor charts algorithms, experi- energy consumption,

ments repository heat dissipation

GridSim Grid/cluster/ Centralized, Generic Configuration Text No Application perfor-

computing hierarchical library files statistics, mance, cost, resource

node/cpu charts usage

Alea Grid/cluster/ Centralized, Framework Configuration Text No Application perfor-

computing hierarchical (introduced files statistics, mance, resource usage

node/cpu layers, plugins) charts

MaGate Grid/cluster/ Decentralized Framework Configuration Text No Application perfor-

computing (plugins) files + command statistics, mance, resource usage

node/cpu line or GUI charts

SimGrid Cluster/ Centralized, Generic Configuration Text No Application perfor-

computing decentralized library files generator statistics, mance, cost, resource

node/cpu charts usage, network

performance

OptorSim Grid/ Centralized, Framework Configuration Text No Application perfor-

cluster/cpu hierarchical files + command statistics, mance, resource usage,

line or GUI charts data management

performance

DGSim Grid/ Centralized, Framework Configuration Text Workload Application perfor-

cluster/cpu decentralized, files statistics, repository mance, resource usage

hierarchical charts

GroudSim Grid/cluster/ Centralized Framework Configuration Text No Application perfor-

node files statistics, mance, cost, resource

charts usage
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accept workloads in various formats and are capable
of supporting more sophisticated models than simple
sequential jobs. Simulators are also evolving towards
user-friendly tools by offering means to visualize the
simulation results. Nevertheless, some of them still re-
quire to be manually provided with input data as plain-
text configuration files.

Compared to other tools, GSSIM allows simulating
a wide scope of physical and logical architectural pat-
terns. In particular, GSSIM provides means of simulat-
ing complex distributed architectures containing mod-
els of the whole data centers, containers, racks, nodes,
etc. While many of the presented tools focus on ad-
dressing specific issues, GSSIM supports simulations
of a wide variety of entities. It covers most of objects
simulated by other tools and adds some innovative fea-
tures such as network advance reservation or genera-
tion of events related to resources, network, and se-
curity events, which are unique among all simulators.
It also provides means (by definition of specific plu-
gins) for complex modeling of the expected applica-
tion performance. As far as programming interface is
concerned, most of popular available tools (e.g., Grid-
Sim and SimGrid) are generic libraries supporting only
the core functionalities. They are flexible but require
substantial effort to develop experiments. GSSIM pro-
vides an easy-to-use framework to facilitate this pro-
cess by several types of plugins, grouping experiments,
and workload management. Moreover, GSSIM pro-
vides an advanced graphical user interface containing
intuitive editors for input data modeling and compre-
hensive statistics presented in a user-friendly and inter-
active manner. GSSIM is the only distributed comput-
ing simulator enabling remote experiment execution
on the Web. GSSIM offers the most comprehensive
simulation environment that should satisfy not only
grid researchers but also cloud, data center and net-
work administrators or application users/developers. In
the following subsection we summarize scenarios and
scheduling problems addressed by GSSIM, while the
above features, being the main advantages of GSSIM,
are described in Section 3 in more detail.

2.4. Scenarios and scheduling problems in GSSIM

GSSIM can be used to simulate the vast majority of
scheduling problems in distributed computing systems.
It enables simulations of many scheduling strategies
applied to various types of applications. In particular, it
can simulate scheduling of multiple independent jobs
at once, various kinds of parallel jobs, and whole work-

flows. Moreover, GSSIM is able to handle rigid and
moldable jobs, as well as preemptive jobs. Through
the appropriate generation of workload (with job ar-
rival times) and implementation of scheduling plug-
ins, an analysis of both on-line and off-line strategies
is possible. In addition to types of problems related to
workload properties, GSSIM allows defining time con-
straints in workloads and taking them into account in
scheduling algorithms. In clairvoyant scheduling the
knowledge concerning execution times and possible
constraints has a significant impact on chosen schedul-
ing algorithms and usually requires scheduling with
advance reservation in distributed computing infras-
tructures. As for advance reservation, GSSIM enables
simulating of various scheduling problems including
both best-effort and QoS-based approaches. To real-
ize the latter case, GSSIM supports negotiations be-
tween global schedulers and resource providers that are
built on top of local schedulers. This advance reserva-
tion mechanism includes two phase commit protocol.
More details concerning advance reservation and ne-
gotiations in GSSIM can be found in [17,24]. Addi-
tionally, GSSIM provides the possibility of scheduling
based on performance estimations. These estimations
can be generated on the basis of processing times in-
cluded in the workload or using a custom algorithm
implemented by a researcher. Furthermore, more com-
plex dependencies between resource parameters and
execution time can be modeled by the implementation
of time estimation plugins. In this way GSSIM also
deals with a heterogeneity of resources. The details of
execution time estimation are presented in Section 3.3.
At a local level, a developer of a scheduling plugin
has an unlimited access to queues and running tasks.
Therefore, a variety of both space- and time-sharing
policies can be applied. Moreover, a wide range of
adaptive scheduling paradigms is supported, including
suspending, resuming, and migrating jobs both before
and during the execution. Hence, for instance, devel-
opers can implement algorithms on the basis of back-
filling and preemption. For each experiment, detailed
results are collected. They contain many basic met-
rics commonly used when evaluating scheduling algo-
rithms, e.g., makespan, mean job completion time, max
tardiness, resource utilization, etc. In addition to global
criteria, GSSIM supports user-specific criteria which
can be defined in the workload for each user separately.
In this way, a researcher can study strategies aiming at
finding schedules that takes perspectives of individual
users into account.

GSSIM has been successfully applied in a substan-
tial number of research projects and academic stud-
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ies. For instance, GSSIM allows Grid computing re-
searchers to study the performance of many schedul-
ing algorithms in complex distributed computing in-
frastructures. In particular, within GSSIM it is possible
to establish a wide variety of distributed computing ar-
chitectures and perform repeatable experiments involv-
ing diverse scheduling strategies within GSSIM. They
may vary from simple job scheduling policies, through
multi-criteria resource management [21], up to com-
plex scheduling problems with QoS requirements [24]
and Section 4.3. GSSIM can also facilitate the work
of queuing systems administrators by providing means
of evaluating efficiency of various queue configura-
tions. Different approaches to this problem, contain-
ing studies on various queues types, increasing num-
ber of queues, and various job selection policies, can
be found in [18] and Section 4.1. As a network simula-
tor, GSSIM has been used to study the problem of re-
source allocation with network resources for workflow
applications that is presented in [23]. It has also been
adopted as a simulation framework in European project
called Federica [7] in order to test different approaches
concerning resource allocation in virtual network ar-
chitectures. Moreover, it can also be exploited by
network administrators to find possible bottlenecks in
network configuration used for demanding HPC appli-
cations. Data center administrators or owners can ben-
efit from GSSIM energy module as it provides a com-
prehensive support for energy-aware scheduling exper-
iments. In this way they can investigate how energy
consumption depends on workload type and schedul-
ing policies. Detailed information concerning energy
module is presented in Section 3.5. Recently developed
extensions provide new interesting features for both
cloud providers and cloud users. The former are able
to optimize their cloud environment by tuning manage-
ment policies and configuring virtual machines, while
the latter can estimate the cost s of leasing resources
from cloud providers. Finally, distributed applications
developers have the possibility of tuning their applica-
tions to specific computing infrastructure.

3. Simulator features

The comparison of simulation tools presented in
Section 2 shown that GSSIM enables modeling and
simulation of a wide spectrum of distributed com-
puting problems. GSSIM addresses this issues with
the set of sophisticated features described in previ-
ous section. Due to modular framework architecture,

that corresponds to the real world, a wide scope of
modules that provide aforementioned capabilities can
be incorporate into GSSIM environment. Details con-
cerning GSSIM architecture, including scheduling plu-
gins, are presented in [17]. In such a way, a num-
ber of extensions is available within GSSIM including
simulated architecture flexibility, advanced workload
management, network simulation, application perfor-
mance modeling, simulation of energy efficiency and
web GUI enabling remote management and execution
of simulation experiments. All these features are de-
scribed in the following sections.

3.1. Simulated architecture

The main goal of GSSIM is to enable researchers
to effectively perform experiments that contain simu-
lations of distributed computing environments. There-
fore, it assumes a distributed infrastructure with mul-
tiple administrative domains (called also sites in this
paper) and scheduling entities. In general, GSSIM
models two generic types of scheduling entities: global
and local schedulers. Global scheduler, is responsible
for scheduling jobs to resources that belong to differ-
ent administrative domains. To this end, it must inter-
act with multiple sites (the most common example of
a site is a computing cluster under control of one of
popular queueing systems, such as PBS, LSF, SGE,
etc.) including retrieving information about resources,
submitting jobs, or creating reservations depending on
specific settings and a type of considered scheduling
problem. A local scheduler is responsible for manag-
ing resources that belong to a single administrative do-
main (site). It retrieves tasks and reservation requests
from global schedulers. GSSIM allows to build a hier-
archy of local schedulers corresponding to the hierar-
chy of resource components over which the task may
be distributed (e.g., clusters and computing nodes).

Having these two generic entities, GSSIM can be
configured to model a large scope of architectural pat-
terns. To this end, users may define for each global
scheduler to which local schedulers or other global
schedulers it can submit tasks and/or reservation re-
quests. An example of defining distributed architec-
tures with multiple workloads and Grid schedulers is
presented in Fig. 3. In this example, we assume that
there are two Grid schedulers, which manage their sep-
arate workloads. These schedulers have access to mul-
tiple local schedulers that can subsequently form vari-
ous hierarchies. However, each Grid scheduler can ac-
cess a different set of local ones. On the other hand,
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Fig. 3. Example of distributed scheduling architecture in GSSIM; WL – Workload, GS – Grid scheduler, LS – Local scheduler.

more than one Grid schedulers can submit tasks to
a single local scheduler. This architecture is just an
example, so obviously other configurations are possi-
ble, for instance, fully distributed case with a separate
workload for each scheduler.

3.2. Workload management

In this section details concerning the workload struc-
ture and management are described.

3.2.1. Workload structure
Experiments performed in GSSIM require a descrip-

tion of jobs and tasks which will be scheduled during
simulation. As a basic description, GSSIM uses files in
the Standard Workload Format (SWF) [26] or its ex-
tension Grid Workload Format (GWF) [10]. In addi-
tion to the SWF file, some more detailed description
of a job and task can be provided in additional XML
file. Each XML file represents one job, and each job
consist of multiple tasks. This form of description pro-
vides a scheduler with more detailed information about
task requirements, user preferences and execution time
constraints, which are unavailable in SWF/GWF files.
An example of such information is a set of parame-
ters related to execution time constraints. They express
user’s knowledge about task execution time and user’s
requirements about the earliest start and the latest end
time of a task – parameters essential in scheduling with
advance reservations. Other parameters define depen-
dencies between tasks in order to build workflows.

3.2.2. Workload generator
The main purpose of the workload generator tool

is to create synthetic workloads. It generates standard
SWF workloads as well as additional parameters in
auxiliary file (in the XML format).

All elements of the workload, mentioned in the pre-
vious section, can be described by a number of at-
tributes, beginning from a number of tasks, task ar-
rival time, task runtime, through task resource require-
ments, such as requested number of CPUs, up to user’s
preferences. Input parameters of the workload gener-
ator cover most of workload attributes. Each configu-
ration parameter is described by standard statistical at-
tributes, such as mean, minimum, maximum, standard
deviation, and may have predefined probabilistic dis-
tribution, e.g., normal or constant.

One of the objectives of the workload generator is
to create synthetic workloads which are similar to real
ones [16]. Therefore it is possible to define dependen-
cies between any two parameters in configuration file.
Exact values can be replaced by the dependency in a
form of a mathematical expression which allows to use
basic operators like +, −, ∗, /, (, ). For instance, depen-
dency between a number of CPUs and memory used
by jobs can be defined.

In addition to parameter dependencies, researchers
can define parameters which have different probability
distributions at different time periods. This feature al-
lows to reflect the natural changes of tasks’ parameter
distributions at certain time or, in other words, to model
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daily cycles. For instance, tasks which are submitted in
night hours may be longer then tasks submitted during
a day time.

Another feature of the workload generator which al-
lows to create more natural workloads is the use of
multiple distributions for different parts of a workload.
It is possible to define for a single parameter a number
of distributions which describes only some percentage
of generated values. For example, 30% of tasks will
require 10 CPUs and the remaining 70% will require
5 CPUs.

3.3. Application performance modeling

GSSIM provides means to include specific applica-
tion performance models during simulations. To this
end, additional plugin and interface are included in the
GSSIM framework. Implementation of this plugin al-
lows researchers to introduce specific ways of calculat-
ing task execution time.

The following parameters can be applied to specify
execution time of a task:

• Processor type and parameters.
• Available memory.
• Task length (number of CPU instructions needed

to complete a task).
• Network parameters.
• Task requirements.
• Input data size.

Based on these parameters an estimated execution time
can be calculated in various ways depending on the
specific applications and scenarios.

The basic plugin available within the GSSIM release
implements the most common performance model of
a task, i.e. linear dependency between execution time
and resource speed. According to the classification
given in Section 2.4, this plugin implements a model
with uniform processors. Time is calculated based on
an actual task length (measured as a number of CPU
operations) and CPU speed (expressed as a number of
operations per second). Let us denote the former pa-
rameter as li, where i is a number of a given task, and
the latter parameter as μj , where j is a number of a ma-
chine. Additionally let us assume that nj is a number
of processors of machine j allocated to this task. Then
we obtain actual execution time of task i on machine j,
denoted as pij , using the following simple formula:

pij =
li

μjni
. (1)

Fig. 4. Levels of information about jobs.

Of course, we can easily imagine more complex de-
pendencies between execution time and parameters of
resources and application. For instance, speed up re-
sulting from parallelization usually is worse than lin-
ear. Therefore, instead of proportional decrease of an
execution time for bigger numbers of processors one
can model it using other functions, for instance of the
form:

pij =
li

μj ln ni
. (2)

In the case of parallel and distributed applications
we should also include information about available
network parameters to model speed-up realistically.
Other important issues include task memory require-
ments and machine memory limits.

Using parameters listed in this section developers
can, for instance, take into account architectures of un-
derlying systems, such as multi-core processors, or vir-
tualization overheads, and their impact on final perfor-
mance of applications.

3.4. Flow-based simulation of network using advance
reservation

Several simulation tools use a network model based
on a packet-level network approach (see Section 2.3).
This model assumed packetizing data that is sent over
network into packets limited by the Maximum Trans-
mission Unit (MTU) size. As all packets are sent over
the links this approach causes a significant overhead
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in simulating large data transfers. For this reason, the
network flow model was introduced [3]. It models data
transfers as flows instead of sending large numbers of
packets. Applied bandwidth sharing model uses sim-
ple min–max bandwidth fair sharing, i.e. each flow that
shares a link receives an equal portion of the band-
width.

GSSIM uses the flow networking concept because
using this fluid view of network traffic the speed of
simulations is largely improved by avoiding a need to
packetize large network transfers as shown in [3]. Fur-
thermore, GSSIM enhances the network flow model by
additional functions that provide more complex infor-
mation about network topology and by the network ad-
vance reservation functionality. These capabilities are
relevant for experiments with co-allocation of various
types of resources and for analysis of data management
aspects in distributed computing, especially in grids
and clouds. Architecture of the flow-based network
simulator supporting advance reservations, which was
adopted in GSSIM is illustrated in Fig. 5.

The figures shows an example of network topology
that consists of nodes: routers, sites, and links between
them. It also presents two components which were
added to GSSIM: Network Manager and Path Com-
puting Element. Arrows show interactions between the
components. The Network Manager provides basic in-

formation about network, such as network topology,
bandwidth and latency between nodes. Moreover, it is
responsible for handling network reservation process
including creating, canceling and modifying reserva-
tions. It updates calendars which are associated with
every link. The calendar represents changes of the link
bandwidth over a period of time. The second impor-
tant module is the Path Computing Element (PCE),
which supports Network Manager by providing two
network features. PCE finds the shortest path between
two nodes by adopting Dijkstra‘s algorithm and calcu-
lates the maximum flow between each pair of sites. It
returns a list of calendars for each connection between
the nodes.

A common use cases may look as follows. A sched-
uler queries the Network Manager about a network
topology and then about bandwidth on a given path.
Then it makes a decision whether to send data in the
best effort manner relying on the information it re-
ceived or to send data using reservation. In the sec-
ond case it is necessary to create a reservation first.
The reservation guarantees constant bandwidth during
sending data with the reservation period. A scheduler
sends its request to the Network Manager which al-
lows it to create a reservation on particular path or on
the shortest path between given nodes with a requested
bandwidth in a given period of time. It results in up-

Fig. 5. Managing network advance reservations in GSSIM.
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dating calendars related to the reserved links. Once
a reservation has been created data can be sent with
a proper reservation identifier. Reservation can be al-
tered or cancel.

In order to add the advance reservation capability to
the network simulation, in addition to changes of the
architecture and information exchanged among com-
ponents, enhancements of the flow networking model
were needed. In general, duration of a network flow is
a sum of latency and time needed to send data through
the network. The latter is a ratio of data size to the
available bandwidth. This total time can be calculated
using Eqs (3)–(5) [3]. Let LAT(f ) be the total latency
of a flow f from u to v. Then the total latency is a sum
of latencies of all edges on the path that connects the
source u to the destination v, i.e.

LAT(f ) =
∑

(u′ ,v′ )εf

LAT(u′, v′). (3)

Minimal bandwidth min BWmin(f ) is the smallest
bandwidth available on any edge on path between u
and v and is given by the formula:

BWmin(f ) = min
(u′ ,v′ )εf

BW(u′, v′)
n(u′, v′)

, (4)

where n(u′, v′) is the number of active flows over link
(u′, v′).

Now, given that SIZE(f ) is a number of bytes in
flow f , the total duration of network flow f can be cal-
culated as:

T (f ) = LAT(f ) +
SIZE(f )

BWmin(f )
. (5)

Taking advance reservations into consideration
Eq. (3) remains unchanged (since latency is the same)
while Eqs (4) and (5) must be transformed as follows:

BWmin(f , ri) =
BWR((u, v), ri)

nri (u, v)
, (6)

T (f , ri) = LAT(f ) +
SIZE(f )

BWmin(f , ri)
, (7)

where ri is a reservation of network used to transfer
given data. The whole path (u, v) is considered instead
of particular links (u′, v′) since within one reservation
the same bandwidth is reserved at all links in the path.
Thus BWR((u, v), ri) is a bandwidth allocated to reser-
vation ri while BWmin(f , ri) is a bandwidth available

for flow f using reservation ri. In this case nri (u, v)
denotes active flows within a given reservation (mul-
tiple data transfers can be performed within a single
reservation). Equations above express bandwidth and
duration of network flow with respect to reservation
ri. If data is transferred in a best effort manner, i.e.
through non-reserved links, total time is calculated as
in (5), while bandwidth is given by:

BWmin(f )

= min
(u′ ,v′ )εf

BW(u′, v′) − BWR(u′, v′)
n(u′, v′)

. (8)

The use of flow networking concept with presented
extensions allows GSSIM to provide efficient simula-
tions of network including reservation capabilities.

3.5. Simulation of energy efficiency

GSSIM allows researchers to take into account the
energy consumption issue in distributed computing
simulations [14]. To introduce the energy consumption
to a simulation environment appropriate energy con-
sumption models must be used. The main goal of the
models is to emulate the behavior of the real comput-
ing resource and the way it consumes energy. Due to
reach functionality and flexible environment descrip-
tion, GSSIM can be used to develop new energy con-
sumption models or to examine energy management
strategies. In more detail, GSSIM provides a function-
ality to define energy efficiency of resources, depen-
dency of energy consumption on resource load and
specific applications, and to manage power modes of
resources. The energy consumption models provided
by default in GSSIM can be classified into following
groups, starting from the simplest model up to the more
complex ones:

Static approach is based on a static definition of re-
source power usage. The model calculates total amount
of energy consumed by the computing resource system
as a sum of energy consumed by all its components
(processors, disks, power adapters, etc.). In the sim-
plest case specific power usage values are assigned to
computing nodes. More advanced versions of this ap-
proach assume definition of resource states along with
corresponding power usage. Energy states are defined
separately for each component of the computing re-
source system such as processor, memory, disk, power
adapter, etc. By default, similar to processor C-States,
on/off/sleep/stand-by basic states are supported. How-
ever user can define any number of new, resource spe-
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cific, states. For the processor it is also possible to de-
fine frequency (voltage) levels, so called P-States, in
which processor can operate with specific power usage
levels. This model follows changes of resource energy
states and calculate amounts of energy defined for each
state.

Resource load model expands static energy state de-
scription and enhances it with realtime resource usage,
most often simply the processor load. In this way it en-
ables a dynamic estimation of power usage based on
resource basic power usage and state (defined by static
resource description) as well as resource load. For in-
stance, it allows to distinguish amount of energy used
by idle processor and a processor at full load. In this
manner energy consumption is directly connected with
energy state and describes average power usage by the
resource working in a current state. For the processors
which can operate on more than one frequency level,
such description must be provided separately for each
level.

Application specific model allows to express differ-
ences in the amount of energy required for executing
various types of applications at diverse computing re-
sources. It considers all defined system elements (pro-
cessors, memory, disk, etc.), which are significant in
a total energy consumption. Moreover, it also assumes
that each of these components can be utilized in a dif-
ferent way during the experiment and thus have differ-
ent impact on total energy consumption. To this end,
specific characteristics of resources and applications
are taken into consideration. Various approaches are
possible including making the estimated power usage
dependent on defined classes of applications, ratio be-
tween CPU-bound and IO-bound operations, etc. All
these dependencies can be modeled in the energy pro-
files, special plugins used to customize estimation of
energy consumptions to specific applications and hard-
ware.

In order to model energy management in GSSIM
a researcher has to perform several steps. First, a re-
source description has to be prepared. Developer,
should specify power usage of resources. Depending
on an accuracy of a model user may provide addition
information about energy states which are supported
by the resources, amounts of energy consumed in
these states, energy consumption by specific subcom-
ponents, or energy consumption related to resource
load to calculate the total energy consumed by the
resource during runtime. If high accuracy and cus-
tomization to specific applications and hardware is re-
quired, a user can defined energy profiles that provide

means to calculate dynamic energy consumption ac-
cording to application and resource models provided.
Information provided within the resource description,
both static resource description and values calculated
by the resource energy profile, can be used to perform
advanced resource management. GSSIM provides in-
terfaces, which allow scheduling plugins to collect
detail information about computing resource compo-
nents and to change their energy states. Presence of
detailed resource usage information, current resource
energy state description and functional energy manage-
ment interface enables an implementation of energy-
aware scheduling algorithms. Resource energy con-
sumption become in this context an additional
criterion in the scheduling process, which use vari-
ous techniques to decrease energy consumption, e.g.,
workload consolidation, turning off unused resources,
cutting down CPU frequency and others. After experi-
ment performed using GSSIM the energy management
process and efficiency of used policies can be summa-
rized and analyzed. To this end, detailed data about
each resource component state and the energy con-
sumed by it is collected. To ensure appropriate level of
details each change of the resource component energy
state, each value returned by the resource energy pro-
file is logged along with time stamp and presented in a
user friendly chart form.

3.6. Remote management and execution of simulation
experiments

GSSIM project is accompanied by the web inter-
face and system that provides online access compre-
hensive experiment editor, remote experiment execu-
tion as well as the experiments repository. Perform-
ing experiments requires to establish the simulation
environment properties first. GSSIM interface offers
intuitive resource and network topology editor which
guides user through this stage. It supports the drag and
drop paradigm and therefore relieves the user from the
need of preparing the input files manually. Every re-
source can be easily edited by dedicated forms, which
enables defining appropriate entity parameters. Web
GSSIM interface includes also workload editor and
generator tool. It provides all necessary means to fa-
cilitate the whole process and create the workload ac-
cording to the statistical parameters specified by the
user. Visualization of results is possible through inter-
active graphs that allow users to adjust the chart con-
tent to their requirements. Moreover, users can effort-
lessly customize chart size using advanced mechanism
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Fig. 6. GSSIM GUI.

of zooming, switch between various charts and quickly
view interesting details about jobs and resources. The
concept of GSSIM experiment groups enables users to,
first, run multiple options of one experiment at once
and, afterwards, to study the impact of specific param-
eters on simulation results. An example of the experi-
ment editor window with generated chart for resource
utilization is presented in Fig. 6.

4. Simulation experiments

GSSIM, due to its flexibility, can be applied to a
wide scope of experiments. As it was mentioned in
Section 2.4, these experiments can be conducted by
scientists to verify their research hypotheses, adminis-
trators to safely tune configuration of their production
systems or by resource owners to assist them in making
decisions concerning extensions of computing infras-
tructure. GSSIM has been already successfully applied
to many scheduling problems, e.g., [15,16,20].

To demonstrate capabilities of the simulator we
present in this section three examples of results of
experiments conducted using the GSSIM framework.
The first experiment uses the best effort strategies and
real traces to investigate consequences of resource par-
titioning. In the second experiment we illustrate the
use of detailed Gantt diagrams to study and compare
two scheduling algorithms. The third experiment con-

tains simulations of algorithms using advance reserva-
tion on the basis of the synthetic workload generated
by GSSIM.

4.1. Study of partitioning

Proper configuration of resource management sys-
tems is a complex task performed by administrators of
computing infrastructures. This configuration must en-
sure efficient management of workloads and high re-
source utilization. One of techniques used is partition-
ing of larger pools of resources into smaller parts. Par-
titioning may need introduction of two levels of work-
load management. Nevertheless, consequences of such
decision should be evaluated a priori to avoid problems
with the real system operation. The simulation envi-
ronment such as GSSIM is a perfect tool to perform
such what-if analysis. In this section we illustrate how
GSSIM can be used to study this problem based on
real workload traces. We assumed the use of best ef-
fort strategies such as First Come First Serve (FCFS)
and the off-line scheduling strategy Largest Size First
(LSF). Thus, let us show now experimental results ob-
tained by FCFS and LSF evaluated in the light of the
following criteria: utilization, waiting time and flow
time for a smaller fraction of the SDSC SP2 workload
(jobs identified from 1 to 1000), see Table 3.

In contrast to FCFS, LSF is an example of the off-
line strategy which is usually invoked periodically in a
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scheduling system to sort the queue according to job-
size parameters. Obviously, the longer system waits to
apply the LSF strategy the higher number of jobs is
collected for further processing. This natural character-
istic of any off-line scheduling strategy influences the
overall performance of the system, especially all eval-
uation metrics defined based on flow and waiting time
parameters as there are no scheduling decisions made
during the off-line period. On the other hand, a set of
collected jobs together with their requirements allows
a scheduler to take into account simultaneously all job
and resource characteristics to optimize its schedul-
ing decisions. Therefore, there is always a trade-off
between on-line and off-line configuration parameters
which in practice are adjusted experimentally. There-
fore, we decided to invoke LSF with different frequen-
cies in another simulation tests we conducted, respec-
tively every p = 10, p = 60, p = 600 and p = 3600 s.
As presented in Table 3, FCFS strategy achieved still
good results, but it was outperformed by LSF-10 and
LSF-60 describing the configuration of LSF with the
off-line scheduling period p = 10 and p = 60 s,
respectively. All four strategies FCFS, LSF-10, LSF-
60 and LSF-600 reached the same level of utilization
U = 0.545, however the total waiting time was re-
duced by 2% in the case of LSF-10 and 3% in the
case of LSF-60. As expected, much longer invocation
periods of the LSF strategy affected significantly the
mean flow time, and corresponding total waiting time,
increased up to 81,621 and 73,449, respectively. At
the same time, LSF-3600 strategy reduced utilization
down to the level of 49%, however, because of the high
peak load selected from the SDSC SP2 workload for

this experiment, further improvements for this objec-
tive would be difficult to achieve.

To perform more comprehensive simulation studies
we introduced hierarchical scheduling structures with
two local queues involved. First, we partitioned com-
puting resources into two sets based on additional de-
scriptions and comments to real workloads at [26]. In
practice, partitioning techniques are often used by local
administrators giving them the possibility of assign-
ing end-users or resources to various queues depend-
ing on the monitored workload and past system be-
haviors. Therefore, for further simulation experiments,
all created partitions and attached computing resources
were provided to the Grid-level over a certain num-
ber of local queues. Let us first describe hierarchical
structures we used during the next experimental tests.
A number of computing resources reported for SDSC
SP2 was 128, and first we created two partitions pro-
viding the access over two queues to 2 × 64 computing
resources. However, we had to modify a bit the original
SDSC SP2 workload by reducing the requested com-
puting resources from 128 to 64 for jobs identified as:
86, 91, 95, 144, 171 (end-user 92) and 208, 742, 746,
750, 920, 967 (end-user 147). To evaluate hierarchi-
cal scheduling structures, Random and Load Balancing
strategies were used to assign jobs at the grid-level to
local queues, while FCFS and LSF-600 strategies were
applied for local queues.

As we can observe in Table 4, Partitioning the SDSC
SP2 system into two parts resulted in a lower uti-
lization of computing resource. As expected, such a
hierarchical scheduling structure did not outperform
the performance of the original structure where only
one queue was used together with 128 computing re-

Table 3

Performance of local scheduling strategies: FCFS and LSF applied for the SDSC SP2 workload (jobs 1-1000)

Queues × Res. Grid-level Local-level Utilization Flow time (s) Waiting time (s)

1 × 128 FCFS FCFS 0.545 16,137 7965

1 × 128 FCFS LSF-10 0.545 15,972 7800

1 × 128 FCFS LSF-60 0.545 15,896 7724

1 × 128 FCFS LSF-600 0.545 18,127 9955

1 × 128 FCFS LSF-3600 0.494 81,621 73,449

Table 4

Performance of two-level hierarchical scheduling structures for the SDSC SP2 workload (jobs 1-1000)

Queues × Res. Grid-level Local-level Utilization Flow time (s) Waiting time (s)

2 × 64 Random FCFS 0.517 41,625 33,366

2 × 64 Random LSF-600 0.502 42,895 34,636

2 × 64 Load balancing FCFS 0.53 33,479 25,220

2 × 64 Load balancing LSF-600 0.532 34,988 26,728
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S. Bąk et al. / GSSIM – a tool for distributed computing experiments 17

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 7. Comparison of utilization generated for the original single-queue and two-queue partitioned SDSC SP2 system.

sources. Even the reduced job sizes of a few jobs in
the analyzed workload did not help to improve the to-
tal waiting time and mean flow time in the hierarchi-
cal system with two local queues. However, compar-
ing strategies at the Grid-level, one should note that
Load Balancing algorithm significantly outperformed
the Random approach with respect to all evaluated cri-
teria. It allows to increase utilization of resources by
6%, while the flow time and waiting time were reduced
by 19 and 24%, respectively. Thus, these results con-
firmed the importance of the resource allocation phase
on a grid. Moreover, the configuration of Load Bal-
ancing and LSF-600 procedures turned out to be better
than Load Balancing and FCFS strategies with respect
to utilization criterion. Hence, it may be worthwhile
to introduce more advances scheduling, i.e. off-line
scheduling, so that a scheduler can take into account
simultaneously more task and resource characteristics
to better optimize schedules. Generated by GSSIM uti-
lization of resources for different hierarchical configu-
rations (single queue with FCFS and LSF-600 and two-
queue partitioned with Load Balancing and LSF-600
strategies) used in simulation experiments is presented
in Fig. 7. More details of this experiment can be found
in [21].

GSSIM simulation environment allowed us to per-
form this study without additional effort required to es-
tablish specific configuration of the real infrastructure.
Use of GSSIM to simulate production environments
may save a lot of work and inconvenience for users of
the system.

4.2. Comparison of algorithms

This section contains results of a comparison of two
scheduling policies: on-line (a single task at once) vs.

off-line (scheduling a set of tasks at once on a available
resource pool). In the former case a scheduler can al-
locate resources (specific time slot) for a single task in
the head of the queue. It takes tasks one-by-one using
FCFS policy, query for a slot for this task and, if query
is successful, task is allocated and executed. Another
approach assumes that a scheduler can select a task to
execute from a set of tasks in the queue. In this case
a scheduler can check particular time slots against re-
quirements of various tasks. One of the simplest meth-
ods that take advantage of this approach is the Gra-
ham’s algorithm [9] which we adopted for this com-
parison.

In Fig. 8 one can easily see that using Graham’s al-
gorithm the scheduler is able to submit certain tasks
earlier because for each slot it checks tasks until it
finds one that can be allocated to this slot. Two exem-
plary regions with tasks allocated earlier are marked
in the figure. Generally, this advantage of the Graham
approach leads to better resource utilization and task-
related metrics such as mean flow time. Detailed values
of these metrics for both approaches and their depen-
dency on a number of tasks are obviously available in
statistics generated by GSSIM. It was easy to see that
while for small number of tasks differences are small
(due to substantial amount of free resources at the be-
ginning), for greater number of tasks the Graham pol-
icy demonstrates its advantage both in terms of mean
flow time and resource utilization.

More details of this experiment can be found in [24].
The results presented above are just simple example

of more detailed analysis which is available in GSSIM.
By browsing details of Gantt charts generated for jobs
and/or reservations one may analyze phenomena that
occur in the scheduling process more deeply than just
based on general statistical values. More details on us-
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Fig. 8. Comparison of schedules obtained by FCFS (left) and Graham (right) policies.

ing GSSIM Gantt charts to analyze schedules can be
found in [18].

4.3. Configuration of advance reservation

Some of resource management systems support the
advance reservation functionality, e.g., [27,28]. Nev-
ertheless, advance reservation may significantly de-
teriorate efficiency of the whole system. Therefore,
a proper configuration of this aspect of the resource
management system is very important. One of param-
eters that are of particular importance is a length of a
reservation time slot. This length defines a minimum
time period for which resources can be reserved in the
system. Thus, it determines a granularity of reserva-
tions. For instance, Platform LSF [27] allows reserva-
tions in 10 min time slots (i.e., fixed-length time slots)
while SGE [28] does not impose a minimal reservation
length (referred as variable-length time slot in the se-
quel). Generally, fixed-length time slots improve per-
formance of searching and allocation algorithms as the
list of slots does not depend on a number of reserva-
tions in the system. Of course, increasing a length of a
time slot leads to further performance improvements.
On the other hand, long fixed-length slots result in low
resource utilization. Therefore, finding an appropriate
trade-off between resource utilization and performance
of algorithms is an important issue.

In order to study how performance of the partic-
ular methods depends on parameters of the tasks 16
workloads diverse in terms of task sizes and lengths
were prepared. We assumed that neither the earliest
start times nor deadlines were defined, i.e. available re-
source were searched within period from current time
to infinity. Resource consisted from 64 identical pro-
cessors.

We studied the impact of slot lengths on quality
of results, namely, resource utilization, makespan, and
mean flow time. We compare the variable-length slots
approach with two versions of the fixed-length slots ap-
proach: with short (10 min) and long (1 h) slot length.
Resource utilization obtained using these methods is
compared in Fig. 9. It is easy to see that the longer
length of a fixed slot the bigger the number of “gaps”
that leads to lower resource utilization.

The results presented above are confirmed in Fig. 10
where our expectations concerning resource utiliza-
tion are confirmed by precise values. They are com-
plemented by values of makespan and mean flow time.
More details of this experiment can be found in [24].

An administrator looking at the presented resource
utilization charts as well as performance statistics may
choose an appropriate time slot length for the system
in question.

5. Conclusion and future work

In this paper we presented GSSIM – a simulation
framework that addresses the issues relevant to dis-
tributed computing experiments. In particular, GSSIM
aims at facilitating, automating, and accelerating the
process of preparation, execution, and analysis of ex-
periments. We compared GSSIM with other known
simulators based on a classification of distributed com-
puting simulator features proposed in this paper. After
analysis of this comparison we concluded that GSSIM
delivers several functionalities which are not, to the
best of our knowledge, provided by any other dis-
tributed computing simulation tool available, namely:
efficient network modeling including advance reserva-
tion capability, the possibility of adding customized
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Fig. 9. Resource utilization for the fixed- and variable-length slots approach.

Fig. 10. Resource utilization, makespan and mean flow time for variable- and fixed-length slots approaches.

application performance models related to both exe-
cution time and power usage, advanced modeling of
various events including network failures and secu-
rity issues, and the possibility of managing and exe-
cuting simulations remotely in the cloud. GSSIM also
contains a flexible workload generation tool allowing
any number of jobs with sophisticated requirements
to be created. Moreover, obtained experimental results

can be analyzed using a fine-grained visualization of
schedules and resource utilization. We have demon-
strated that GSSIM supports a variety of scheduling
problems and scenarios common in distributed com-
puting environments, with specific examples of a few
different experiments using queue-based strategies and
real traces, as well as testing algorithms with advance
reservation on synthetic workloads.
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To enable sharing of workloads, algorithms and re-
sults, we have proposed the GSSIM portal [30], from
where researchers may download various synthetic
workloads, resource descriptions, scheduling plugins,
and results. Users can even manage and run the whole
experiments through the GSSIM web interface. This
portal complements other known websites related to
this area as it provides a repository of synthetic work-
loads and scheduling plugins as well as the online ser-
vices for workloads generation and remote execution
of experiments.

As GSSIM is a highly customizable and extendable
framework which enables a wide range of possible fu-
ture works. Therefore, we will focus on customiza-
tion of simulations for specific scenarios, systems, and
applications. For example, we will aim at more de-
tail modeling of thermal effects caused by applica-
tion load and virtualization overheads of specific cloud
platforms. This will be achieved by development of
new plugins and preparation of workloads and resource
descriptions, which will be shared via the GSSIM por-
tal. In this way the online simulation service will be
constantly extended in order to meet the requirements
of the distributed computing community.
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