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ABSTRACT
This paper addresses the problem of multi-target tracking in
crowded scenes from a single camera. We propose an algo-
rithm for learning discriminative appearance models for dif-
ferent targets. These appearance models are based on covari-
ance descriptor extracted from tracklets given by a short-term
tracking algorithm. Short-term tracking relies on object de-
scriptors tuned by a controller which copes with context vari-
ation over time. We link tracklets by using discriminative
analysis on a Riemannian manifold. Our evaluation shows
that by applying this discriminative analysis, we can reduce
false alarms and identity switches, not only for tracking in a
single camera but also for matching object appearances be-
tween non-overlapping cameras.

Index Terms— tracking, controller, re-identification, co-
variance matrix

1. INTRODUCTION AND RELATED WORK

Tracking multiple objects in real world scenes involves deal-
ing with strong occlusions, illumination changes, and clut-
tered or moving backgrounds. In dense scenarios, similar ob-
ject appearance and complex interactions between different
targets often result in incorrect trajectories with fragmenta-
tion and identity switches.

Recent studies focus on detection-based tracking meth-
ods as the result of significant improvement in object detec-
tion algorithms. These tracking methods detect objects of in-
terest, and then associate detection responses using several
cues, such as appearance, motion, size, and other geometrical
constraints. Unfortunately, missed detections and inaccurate
responses frequently occur, which provides misleading infor-
mation to tracking algorithms. Thus, detection-based track-
ing must overcome these difficulties by using different track-
ing strategies.

In [1], a two-stage approach (local and global) is pre-
sented. At the local stage, humans are tracked using body
parts and particle filter. At the global stage, trajectories are
associated by the Hungarian algorithm. The association cost

matrix is computed using a simple appearance model based
on color histogram, object height and velocity. A more com-
plex appearance model is presented in [2]. This appearance
model discriminates between the object and the background
by employing Haar wavelet features and local binary patterns.
Features are combined using a boosting scheme, in which
negative samples are generated by randomly selected back-
ground regions.

Many approaches either focus on tracking strategies us-
ing simple features as color histograms, or develop the ap-
pearance models discriminating a target from the background
[3]. However, few studies have been undertaken to resolve
ambiguities between the different targets. In [4], the authors
propose an online learning strategy which extracts appearance
model for a set of targets in a sequence, to enhance the robust-
ness of tracklet linking. This model is learned to maximize
inter-tracklet variation whilst minimizing intra-tracklet varia-
tion.

For the last six years, the person re-identification prob-
lem has been the focus of intense research. Person re-
identification can be seen as an extension of the tracking
task to a multi camera scenario, in which the appearance
of the same object registered in disjoint camera views has
to be matched. Significant appearance changes, caused by
variations in view angle, illumination and object pose, make
the problem much more challenging than the single-camera
tracking. As the person re-identification problem is particu-
larly hard, the appearance models which tackle this problem
should be able to handle difference in illumination, pose and
camera parameters.

In this paper, we propose to take advantage of robust re-
identification descriptor [5] for linking trajectories during the
tracking procedure. We show that the re-identification de-
scriptor which handles significant appearance changes across
disjoint cameras, is able to merge tracklets extracted from a
single camera.

This paper makes the following contributions:

• We propose to use Mean Riemannian Covariance Grid
(MRCG) descriptor [5] for linking tracklets into longer



ones to form the final tracking results in a single cam-
era. The tracklets are obtained by a controller-based
short-term tracking algorithm (Section 3).

• We present a new approach for discriminative appear-
ance learning based on a sliding time window. Each
tracklet is learned to highlight its distinctive features.
We show that this technique can be easily applied to
tracking systems, without extracting any additional ref-
erence dataset for learning (Section 4).

The overview of our technique is given in Section 2. Section
3 describes a short-term tracking controller. Then, in Sec-
tion 4 a discriminative learning is presented. We evaluate our
approach in Section 5 before discussing future work and con-
cluding.

2. OVERVIEW OF OUR APPROACH

The proposed approach consists of 3 main steps: (1) object
detection; (2) short-term tracking and (3) linking trajectories
using online discriminated appearances (see Figure 1).

The first step, object detection, can be achieved by apply-
ing simple motion detection algorithms or specialized object
detectors e.g. a human detector. In our case we combine both:
motion and HOG-based detector [6].

In the second stage, we generate tracklets associating de-
tection responses by using a short-term tracking algorithm
(Section 3). The short-term tracking is designed to produce
reliable tracklets, by employing spatial, temporal and appear-
ance descriptors. We develop a controller [7], which assigns
specific weights to these descriptors depending on the context
of the video, thus generating reliable tracklets.

Finally, the last step of our approach consists in linking
the tracklets using MRCG descriptor. We propose a link-
ing strategy examining similarity between tracklets in a slid-
ing time window. For each tracklet computed in sliding time
window w, we build its MRCG representation. MRCG was
designed to discriminate one appearance vs the reference ap-
pearances. We propose to discriminate each tracklet vs the
rest of tracklets computed in given w. At that stage, the dis-
tinctive features of the tracked objects are enhanced, thus im-
proving the linking accuracy. Unlike [4], for each tracklet we
learn online the specific representation of the tracklet appear-
ance, highlighting distinctive features of the particular object.
It means that forN tracklets, we obtainN models, each high-
lighting its differences. In [4] only one model for a set of tar-
gets is learned to maximize discriminative appearance match-
ing.

3. SHORT-TERM TRACKING

The short-term tracking is supervised by a controller [7]
which automatically tunes the object descriptors to cope with
the scene context variations.

3.1. Tracking Algorithm

The tracking algorithm takes as input the video stream and
a list of objects detected in a sliding time window. First, a
link score is computed between any two detected objects ap-
pearing in this time window using a linear combination of 8
object descriptors T extracted from 2D, 3D geometrical in-
formation, various colour descriptors and gradient cues (i.e.
HOG). Successive links form several paths on which an ob-
ject can undergo within this temporal window. Each possible
path of an object is associated with a score given by all the
scores of the links it contains. The object trajectory is simply
determined by maximizing the path score.
3.2. Controller

The aim of the controller is to automatically adapt the object
descriptors T to the context of a video. We train our controller
with various scene contexts and then we employ the controler
to improve tracking accuracy.
Training Phase. The training phase generates the context
clusters. Videos are divided into video chunks where the con-
text of each chunk is assumed constant. Using manually an-
notated objects (ground truth), video chunk contexts are mod-
eled by 6 contextual features: the spatial density of detected
objects; the object occlusion level; the object contrast with
regard to the surrounding background; the variance of this
contrast; the object 2D area and the variance of this area. The
Quality Threshold (QT) clustering algorithm is used to clus-
ter all the video chunk clusters from all the training videos.
The Adaboost algorithm is then used for computing weights
of each object descriptor for each context cluster to maximize
object tracking performance. In the result, the training al-
gorithm produces a learned database which contains several
video context clusters associated with the best object descrip-
tor weights.
Online Control Process. The goal of the online control pro-
cess is to tune the weights of object descriptors T over time
using the learned data from the offline training phase. For
every video chunk of a predefined number of frames, we de-
termine the context cluster membership. Depending on this
cluster membership, we select the learned weights of object
descriptors T to guide the tracking process. In the result, the
tracking algorithm is able to cope with the context variations,
thus producing reliable tracklets.

4. ONLINE DISCRIMINATED APPEARANCES

4.1. Appearance model

Short-term tracking algorithm generates short but reliable
tracklets. A tracklet is represented by a set of cropped images
corresponding to the tracked regions. We use this set of im-
ages for computing MRCG descriptor.

MRCG [5] refers to Mean Riemannian Covariance Grid,
which has been designed to describe a set of images. MRCG



Fig. 1. The overview of the tracking approach in T frames: (a) The raw detection results; (b) the results of the short-term
tracking; (c) the results of linked trajectories using online discriminated appearances.

forms a dense grid structure with spatially overlapping square
regions (cells). These cells are described using mean covari-
ance matrix. Since covariance matrices do not form a vector
space, this mean covariance is computed on a Riemannian
manifold. The mean covariance is an intrinsic average, which
blends appearances from multiple images, holding informa-
tion on feature distribution, their spatial correlations and their
temporal changes during tracking. In the result, each track-
let is represented by MRCG. We employ a discriminative
method to enhance distinctive characteristics of each tracklet
w.r.t. the others, thus improving linking accuracy.

4.2. Discriminative method

The discriminative method assigns weights to MRCG cells of
a specific object, reflecting their relevance. Given a set of sig-
natures Sw = {si}ni=1, where si is signature i computed from
the tracklet registered in sliding time window w, we represent
MRCG by si = {µi,1, µi,2, . . . , µi,m}, µi,j is the mean Rie-
mannian covariance and m is the number of cells in the grid.
For each µi,j we compute its relevance defined as variance
σi,j in a set of tracklet signatures extracted in windoww. This
variance is computed on a Riemannian manifold, projecting
µk,j on tangent plane at µi,j

σi,j =
1

n− 1

n∑
k=1;k 6=i

‖ logµi,j
(µk,j)‖2µi,j

, (1)

where operator logµi,j
is uniquely defined on the Riemannian

manifold, enabling distance computation. Using this discrim-
inative technique, we focus on the features which are dis-
tinctive and at the same time we disregard common patterns
(often corresponding to background). Each signature is dis-
criminated vs the rest of signatures computed in sliding time
window w.

4.3. Linking the tracklets

Tracklet Similarity: Appearance of each tracklet is rep-
resented by MRCG signature. The similarity between two

tracklet signatures sA and sB is defined as

S(sA, sB) =
1
|K|

∑
i∈K

σA,i + σB,i
ρ(µA,i, µB,i)

(2)

where K stands for the set of cells in the grid structure; ρ is
the geodesic distance (see [5] for details); σA,i and σB,i are
the weights of the corresponding cells computed by discrimi-
native method (Section 4.2).

Linking: Given a set of tracklets, we search for the possible
matching candidates based on temporal constraints. We as-
sume that two tracklets can not overlap in time to be a candi-
date for linking. This assumption is based on the observation
that one object can not belong to two different trajectories at
the same time. Using tracklet similarity we link trajectories
based on the threshold strategy applied to our similarity func-
tion. Two tracklets are linked together when their similarity
is high enough (S(sA, sB) > θ). Threshold θ is learned by
maximizing true matches, while using the data employed for
controller training.

5. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our approach using two pub-
lic surveillance datasets: CAVIAR1 dataset and 2008 i-LIDS
Multiple-Camera Tracking Scenario (MCTS)2 dataset.

5.1. Single camera tracking - CAVIAR data

Caviar dataset contains 26 videos, 6 of them are used for train-
ing our controller and the remaining 20 are used for evalua-
tion. We carry out an experiment employing the commonly
used metrics [4]: GT - the number of trajectories in the ground
truth; MT - the percentage of trajectories that are successfully
tracked for more than 80% divided by GT; PT - the percentage
of trajectories that are tracked between 20% and 80% divided
by GT; ML -the percentage of trajectories that are tracked for

1CAVIAR: http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
2i-LIDS: http://www.homeoffice.gov.uk/science-research/hosdb/i-lids/



Method GT MT (%) PT (%) ML (%)
Wu et al.[8] 140 75.7 17.9 6.4

Xing et al.[9] 140 84.3 12.1 3.6
Huang et al.[10] 143 78.3 14.7 7.0

Li et al.[11] 143 84.6 14.0 1.4
Kuo et al.[4] 143 84.6 14.7 0.7

Our approach 140 84.6 9.5 5.9

Table 1. Tracking results on Caviar dataset.

less than 20% divided by GT. The tracking results are pre-
sented in Table 1. Our results show that, although detection
responses are missed (high ML), our discriminative method
achieves high MT = 84.6%, reaching state of the art perfor-
mances.

5.2. Multi camera tracking - i-LIDS data

We perform two experiments on i-LIDS data with multi cam-
eras. The evaluation is presented in the light of linking the
tracklets across disjoint camera views.
i-LIDS-AA [12]: This dataset contains 100 individuals reg-
istered in two non-overlapping cameras. For each individual
a different number of cropped images is given, forming the
tracklet. Our aim is to link correctly the tracklets from the
first camera with the tracklets from the second camera. Al-
though i-LIDS-AA was originally extracted for evaluating the
person re-identification problem, this dataset can also be ap-
plied to test our approach. In experiments we set sliding win-
dow w = 10 individuals (based on the order in the dataset),
which simulates our sliding time window. Assuming a reg-
ular flow of individuals from the first camera to the second
camera, we successfully linked 72% of tracklets. It is worth
noting that the best performance for re-identification achieved
on this data reached 43% for the first rank in CMC curve [5].
The results show that our discriminative learning can handle
such challenging aspects as different color responses and dif-
ferent camera settings.
i-LIDS-crowded:3 This dataset contains a dense scenario
with strong occlusions and complex interactions between ob-
jects. Crowded environment makes the object detection and
the object tracking very challenging. We applied our short-
term tracking to obtain the tracklets from both cameras. Dur-
ing linking the tracklets from the first camera with the track-
lets from the second camera we tuned the similarity threshold
to ensure 100% precision. Finally, 33.3% of ground-truth ob-
jects were linked together across disjoint camera views.

6. CONCLUSION

We proposed a new approach for linking tracklets in a single
and multi camera scenario. By applying discriminative learn-
ing on appearances registered in a sliding time window, we

3TrecVid/Dev08/: 2007-11-01-CAM1-2 and 2007-11-01-CAM3-2

are able to enhance the linking accuracy. The approach was
evaluated on CAVIAR and i-LIDS datasets. In the future we
will investigate how to improve object detection responses to
minimize ML metric.
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