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Abstract

This paper introduces an image region descriptor and
applies it to the problem of appearance matching. The pro-
posed descriptor can be seen as a natural extension of co-
variance. Driven by recent studies in mathematical statis-
tics related to Brownian motion, we design the Brownian
descriptor. In contrast to the classical covariance descrip-
tor, which measures the degree of linear relationship be-
tween features, our novel descriptor measures the degree
of all kinds of possible relationships between features. We
argue that the proposed covariance is a richer descrip-
tor than the classical covariance, especially when fusing
non-linearly dependent features. We evaluate our approach
on tracking related applications, demonstrating that the
Brownian descriptor outperforms the classical covariance
in terms of matching accuracy and efficiency.

1. Introduction
The appearance matching is one of the most desired

bricks in computer vision applications. Recognition, de-
tection, tracking and classification are common examples
of vision tasks, which require robust features for match-
ing. Good features should be distinctive and invariant to
illumination and scale changes [6, 15]. Moreover during
the last few years, there is of great interest to look for fea-
tures which are also invariant to camera changes. This is
the most challenging case of appearance matching that con-
sists in determining whether two image regions registered
by non-overlapping cameras correspond to the same object.
This problem is particularly hard due to significant appear-
ance changes caused by variations in view angle, lighting
conditions and different object pose.

Recent studies have shown that the covariance descriptor
[22], can be successfully applied to appearance matching
[1, 2, 3, 4, 16, 19, 23, 24]. This descriptor encodes informa-
tion on feature variances inside an image region, their linear
correlations with each other and their spatial layout. The

performance of the covariance features is found to be supe-
rior to other methods, as rotation and illumination changes
are absorbed by the covariance matrix.

Although it has been established that covariance is an ef-
fective feature, we revisit its fundamentals and highlight its
limitations. In this work we point out that the covariance
descriptor measures only information on linear dependence
between features. This makes the descriptor incomplete for
characterizing an image region. In other words, having a
diagonal covariance matrix, we may imply feature indepen-
dence, which is not a sufficient condition for statistical in-
dependence in general case. Nonlinear or non-monotone
dependence may exist (section 3).

We overcome this issue by introducing a new image re-
gion descriptor that is a natural extension of covariance
(section 4). The proposed descriptor is referred to as Brow-
nian descriptor due to its analogy to the Brownian covari-
ance. The classical covariance measures the degree of lin-
ear relationship between features, whereas Brownian co-
variance measures the degree of all kinds of possible rela-
tionships between features [20].

The paper illustrates advantages of the new descriptor
over the covariance matrix using theoretical data as well as
real images. Moreover, we provide an efficient algorithm
for extracting the descriptor, while using integral images.

Theoretical deliberations are confirmed by experimental
results on real-data (section 5). We employ the Brownian
descriptor for two vision tasks, i.e. visual tracking and per-
son re-identification. We demonstrate that the Brownian de-
scriptor outperforms the classical covariance descriptor in
terms of both efficiency and accuracy.

2. Related work

In [23] covariance matrix is used for designing a robust
human detection algorithm. Human appearance is mod-
eled by a dense set of covariance features extracted inside a
detection window. Covariance descriptor is computed from
sub-windows with different sizes sampled from different lo-



cations. Then, a boosting mechanism selects the best re-
gions for characterizing a human silhouette.

Covariance matrix has also been successfully applied to
object tracking. In [19] object deformations and appear-
ance changes were handled by a model update algorithm
using the Lie group structure of the positive definite matri-
ces.

The first approach which employs the covariance de-
scriptor for person re-identification (appearance match-
ing across non-overlapping cameras) is [2]. In this work
a HOG-based detector establishes the correspondence be-
tween body parts, which are matched using a spatial pyra-
mid of covariance descriptors.

In [16] we can find biologically inspired features com-
bined with the similarity measure of covariance descriptors.
The new descriptor is not represented by the covariance ma-
trix but by a distance vector computed using the similarity
measure between covariances extracted at different resolu-
tion bands. This method shows promising results not only
for person re-identification but also for face verification.

Matching groups of people by covariance descriptor is
the main topic of [8]. It is shown that contextual cues com-
ing from group of people around a person of interest can sig-
nificantly improve the re-identification performance. This
contextual information is also kept by the covariance ma-
trix.

In [3] the authors use one-against-all learning scheme to
enhance distinctive characteristic of covariances for a spe-
cific individual. As covariances do not lie in Euclidean
space, binary classification is performed on a Riemannian
manifold. Tangent planes extracted from positive training
data points are used as a classification space for a boost-
ing algorithm. Similarly, in [13] discriminative models are
learned by a boosting scheme. However, covariance matri-
ces are transformed into Sigma Points to avoid learning on
a manifold, which often produces an over-fitted classifier.

Unfortunately, using covariance matrices, we also influ-
ence significantly computational complexity. This issue has
been addressed in [24]. The covariance matrices of feature
subsets rather than the full feature vector, provide similar
performance while significantly reducing the computation
load. Similarly, in [1] the authors do not define a priori fea-
ture vector for extracting covariance, but learn which fea-
tures are the most appropriate for matching. Depending on
feature localization in a model, the covariance may be build
using different feature combination, characterizing the ap-
pearance of a given object class in a more efficient way.

State of the art approaches either investigate strategies
for combining covariance descriptors into more robust rep-
resentation or look for particular features which could be
embedded into the covariance descriptor. However no sys-
tematic study has been undertaken to examine a design and
limitations of the covariance descriptor.

In contrast to these approaches, we present new insights
into the covariance descriptor, raising fundamental limita-
tions of covariance as a dependence measure. We design a
new descriptor driven by recent advances in mathematical
statistics related to Brownian motion [5, 20].

The new descriptor not only keeps more information on
feature dependence than the classical covariance, but also
can be treated as a point on an Euclidean space. This makes
the descriptor computationally efficient and useful for real-
time systems.

3. Covariance descriptor and its limitations
In [22] covariance of n-features has been proposed to

characterize an image region. Covariance matrix can be
computed from any type of image such as one dimensional
intensity image, three channel color image or even other
types of images, e.g. infrared. Let I be an image and F be
a n-dimensional feature image extracted from I

F (x, y) = φ(I, x, y), (1)

where function φ can be any mapping, such as color, inten-
sity, gradients, filter responses, etc. For a given rectangular
region Reg ⊂ F , let {fk}k=1...p be the n-dimensional fea-
ture points inside Reg. Each feature point fk is character-
ized by function φ. We represent region Reg by the n × n
covariance matrix of the feature points

CReg =
1

p− 1

p∑
k=1

(fk − µ)(fk − µ)T , (2)

where µ is the mean of the points. In the result, (i, j)-th
element of the covariance matrix can be expressed as

CReg(i, j) =
1

p− 1

p∑
k=1

(fk(i)−µ(i))(fk(j)−µ(j)). (3)

Standardization Covariance values are very often normal-
ized by the product of corresponding standard deviations

ρ = ĈReg(i, j) =
CReg(i, j)√

CReg(i, i)CReg(j, j)
, (4)

and are referred to as the Pearson Product-Moment Corre-
lation Coefficients (ρ).
Covariance limitations ρ measures a linear correlation be-
tween two variables (the strength of linear dependence).
However, as it is computed w.r.t. the mean of the variable
(see equation 3), it is not able to measure nonlinear or non-
monotone dependence (see section 4.3 for elaboration).

4. Brownian descriptor
This section introduces the Brownian descriptor, dis-

cussing its advantages over the classical covariance. Be-
fore elaborating the descriptor, let us introduce the distance



covariance statistics V2 that measures dependence between
random vectors in arbitrary dimension. The mathematical
notations and formulas provided in the next section are in
accordance with [20].

4.1. Distance covariance V2

Distance covariance is a new class of multivariate de-
pendence measure applicable to random vectors of arbitrary
and not necessarily equal dimensions. Distance covariance
is analogous to the classical covariance measure, but with
an important property characterizing independence, i.e. dis-
tance covariance V2 is zero if and only if the random vec-
tors are independent. The same condition is not sufficient
for ρ = 0, as nonlinear or non-monotone dependence may
exist.

Sample distance covariance V2
n between random vec-

tors X and Y is defined as

V2
n(X,Y ) =

1

n2

n∑
k,l=1

AklBkl, (5)

where Akl and Bkl are simple linear functions of the pair-
wise distances between sample elements. These func-
tions are defined in the following. For a random sample
(X,Y) = {(Xk, Yk) : k = 1 . . . n} of n i.i.d random
vectors (X,Y ) from their joint distribution , compute the
Euclidean distance matrices (akl) = (|Xk − Xl|p) and
(bkl) = (|Yk − Yl|q). Define

Akl = akl − āk· − ā·l + ā··, k, l = 1, . . . , n, (6)

where

āk· =
1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl, ā·· =
1

n2

n∑
k,l=1

akl.

(7)
Similarly, we define Bkl = bkl − b̄k· − b̄·l + b̄··.

In [20] it has been shown that the definitions of the new
dependence coefficients have theoretical foundations based
on characteristic functions and on the new concept of co-
variance w.r.t. Brownian motion. Surprising coincidence is
that the properties of distance covariance are the same prop-
erties established for Brownian covariance [5]. Further, we
can see that standardized Brownian covariance measures
the degree of all kinds of possible relationships between
two real-valued random variables, while the standardized
product-moment covariance coefficients (ρ) measures the
degree of linear relationship between two real-valued vari-
ables [20]. In the resultR2(X,Y ) = 0 implies that there is
no dependence between variables. It is relevant to mention
that this is the main advantages ofR2(X,Y ) over ρ. ρ = 0
means that there is no linear correlation between variables,
while non-linear or non-monotone dependence may exist.

(a) |ρ| > 0,R2
n > 0 (b) |ρ| → 0,R2

n > 0

Figure 1. Comparison of ρ vs. R2
n. Values of variables X and

Y are presented as dotted lines. In the first case (a) ρ is positive
and relatively high; in the second case (b) ρ will be close to zero
due to mean-dependent computation, while actually variables X
and Y are far from being independent. R2

n in both cases has high
value.

Standardization Similarly to covariance which has its stan-
dardized counterpart ρ, V2

n has its standardized version re-
ferred to as distance correlationR2

n and defined by

R2
n(X,Y ) =


V2

n(X,Y )√
V2

n(X)V2
n(Y )

, V2
n(X)V2

n(Y ) > 0;

0, V2
n(X)V2

n(Y ) = 0,
(8)

where

V2
n(X) = V2

n(X,X) =
1

n2

n∑
k,l=1

A2
kl. (9)

4.2. Image region descriptor

Let I be an image and L = {L1, L2, . . . , Ln} be a set of
feature layers (L is defined by mapping φ). The Brownian
descriptor is obtained by computingR2

n(L,L), while keep-
ing distance coefficients in the form of matrix. Similarly to
the classical covariance matrix, the Brownian descriptor is
represented by a positive definite and symmetric matrix and
it provides a natural way of fusing multiple features. This
descriptor does not contain any information regarding the
ordering and the number of points (pixels). This implies a
certain scale and rotation invariance over the image regions
in different images as long as layers Li are invariant (simi-
larly to [22]).

4.3. Brownian vs. covariance (R2
n vs. ρ)

Designing the Brownian descriptor, we propose to re-
place ρ by R2

n for measuring dependence between image
features. We claim that this keeps more information on de-
pendence between features included in mapping φ.



In fig. 1 we present sample distribution of two variables
X and Y , which are obviously highly correlated. We can
notice that R2

n can keep information on dependence be-
tween variables even when they are in non-monotone cor-
relation. ρ ignores that correlation due to mean-dependent
computation (see equation 3). This is a fundamental prob-
lem of covariance, in which ρ may go very close to zero
even if the two variables are highly correlated.

For illustrating actual correlations between features in
real data, we use the famous image of Lena’s eye and we ap-
ply mapping commonly used in state of the art [22, 23, 24]
(i.e. φ =

[
x, y, Ixy,∇I

xy, θ
I
xy

]
), where x and y are pixel

location, Ixy is an intensity, ∇xy and θxy correspond to
gradient magnitude and orientation, respectively. Then, we
plot values of these layers together to show dependence be-
tween each two layers. From fig. 2 it is evident that corre-
lations between feature layers have non-linear characteris-
tics. In the result it is obvious thatR2

n keeps more informa-
tion than ρ. Note that e.g. dependence between Ixy and θIxy
(row = 5, column = 3) is held by R2

53 = R2
35 = 0.55,

while ρ53 = −0.01 almost does not detect mutual depen-
dence.

5. Experimental results
In the previous section, we showed advantages of R2

n

over ρ either on a theoretical sample (fig. 1) or on a sample
image (fig. 2). This section focuses on evaluating the Brow-
nian descriptor in real world scenarios. We compare our de-
scriptor with the classical covariance descriptor, while test-
ing their performance on two vision tasks: (1) visual track-
ing and (2) person re-identification.

5.1. Visual tracking

Sample tracking results are given in figures 3,4 and 5.
In each case, a tracker is initialized manually by select-
ing a target window (green rectangle). From this target
window we extract either the covariance descriptor or the
Brownian descriptor using state of the art feature mapping
(φ =

[
x, y, Ixy,∇I

xy, θ
I
xy

]
) [22, 23, 24]. The candidate re-

gion in the next frame is selected by a dense scanning with
2 × 2 pixel step and by minimizing geodesic distance [10]
between the target and the candidate matrix (Brownian or
covariance). We follow the scheme of [19], in which the tar-
get is updated by averaging the descriptor on a Riemannian
manifold. We show the tracking results for both, covariance
and Brownian descriptor, using data related to different ap-
plications. In figures red boxes indicate the misses.
Car tracking In fig. 3 we can observe a drift of both de-
scriptors due to texture changes (shadows on the car modify
the appearance). The results show that the Brownian de-
scriptor is able to track the vehicle through the whole se-
quence while the covariance descriptor loses the object in
the middle of the sequence.

Figure 2. Lena’s eye and correlation plots. Plots illustrate pairwise
correlations of features included in φ. The values correspond to
elements in output 5 × 5 matrix; ρkl = ĈReg(k, l) vs. R2

kl (R2
kl

in brackets).

Head tracking For evaluation we select the action recogni-
tion dataset [18] (fig. 4). The results indicate that the Brow-
nian descriptor is able to adapt to the undergoing changes.
Note that although the appearance of the head changed sig-
nificantly (front and back of the head), the descriptor was
still able to successfully update the model.
Tennis player tracking [7] This is a widely accepted mo-
tion segmentation dataset, which contains moving and sta-
tionary camera recordings. In fig. 5 we can see that the
Browning descriptor has only a few misses, while the co-
variance failed in most part of the sequence. From the re-
sults it is apparent that the Brownian descriptor consistently
achieves better tracking performance than the classical co-
variance.

This template drift problem occurs due to accumulation
of small errors while successfully matching the template in
time. The prime cause of this drift problem is the change in
appearance of object while moving across frames [14, 17].
The results demonstrate that we can track the template for
longer time duration with Brownian as opposed to the clas-
sical covariance matrix. This is due to the fact that match-



Figure 3. Car tracking results (every 5th frame) using: the covari-
ance descriptor (upper image) and the Brownian descriptor (bot-
tom image).

ing in successive frames is more reliable with Brownian and
the template position is better updated w.r.t. time. Therefore
we obtain better drift immunity as compared to covariance-
based tracking.

5.2. Person re-identification

For illustrating quantitative results, we select the person
re-identification problem. During the past few years this
problem has been the focus of intense research bringing
proper metrics and datasets for evaluation. Moreover, as
this is a challenging case of appearance matching, we be-
lieve that it is a good choice for evaluating the Brownian
descriptor.

We carry out experiments on 3 i-LIDS datasets1: i-
LIDS [25], i-LIDS-MA and i-LIDS-AA [3]. These datasets
have been extracted from the 2008 i-LIDS Multiple-Camera
Tracking Scenario (MCTS) dataset with multiple non-
overlapping camera views. The results are analyzed in
terms of recognition rate, using the cumulative matching
characteristic (CMC) curve [12]. The CMC curve repre-
sents the expectation of finding the correct match in the top
n matches. Additionally, we report a quantitative scalar of

1The Image Library for Intelligent Detection Systems (i-LIDS) is the
UK government’s benchmark for Video Analytics (VA) systems

Figure 4. Head tracking results (every 3rd frame) using: the co-
variance descriptor (upper image) and the Brownian descriptor
(bottom image).

CMC curve obtained by the normalized area under CMC
curve (nAUC), which is reported in brackets.

As a baseline we select MRCG [4] descriptor. This de-
scriptor is represented by a dense grid of covariance ma-
trices which are averaged on Riemannian manifold. Using
the same appearance representation we replace the classi-
cal covariance descriptor with our Brownian descriptor. We
refer to this modified descriptor as MRCG+B. For a fair
comparison, we evaluate both descriptors without applying
discriminative analysis proposed in [4].
i-LIDS-MA [3] This dataset consists of 40 individuals ex-
tracted from two non-overlapping camera views. For each
individual a set of 46 images is given. Hence, we have in
total 40×2×46 = 3680 images. Figure 6 illustrates sample
images from i-LIDS-MA.
Brownian descriptor w.r.t. the number of shots For each
pedestrian we create human signature using N = 1, 3, 5, 10
randomly selected images. Then, every signature is used as
a query to the gallery set of signatures from different cam-
era. The procedures were repeated 10 times and average
CMC curves are displayed in fig. 7.

The results indicate that the larger number of frames, the
better performance is achieved by both descriptors. Notice-
ably Brownian descriptor outperforms the classical covari-



Figure 6. The sample images from i-LIDS-MA dataset. Top and bottom lines correspond to images from different cameras. Columns
illustrate the same person.

Figure 5. Tennis player tracking results (every 5th frame) using:
the covariance descriptor (upper image) and the Brownian descrip-
tor (bottom image).

ance matrix in all experiments consistently. This confirms
the expected increase in performance of the new descriptor
and shows that Brownian descriptor is a richer meta-feature
than the classical covariance for the appearance match-
ing. Also notice a significant increase in performance for
N = 1. This implies that the previously discussed theory
has been successfully employed.
i-LIDS-AA [3] This dataset contains 100 individuals auto-
matically detected and tracked in two cameras. Cropped
images are noisy, which makes the dataset more challeng-
ing (e.g. detected bounding boxes are not accurately cen-
tered around the people, only part of the people is detected
due to occlusion). For minimizing misalignment issues,
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Figure 7. Performance comparison on i-LIDS-MA [3].

we employ discriminatively trained deformable part mod-
els [9, 11], which slightly improve detection accuracy.
Brownian descriptor w.r.t. the metric Covariance descrip-
tor as a positive definite and symmetric matrix is usually
assumed to lie on a Riemannian manifold. Hence, com-
puting distance between two matrices, we need to solve the
generalized eigenvalues problem (geodesic distance [10]),
which brings a computational burden. The geodesic dis-
tance can be also approximated by mapping matrices to a
tangent plane [21] and then computing the L1 norm. Fi-
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Figure 8. Performance comparison on i-LIDS-AA [3] using differ-
ent metrics: L1 - L1 norm, L1T - L1 norm on a tangent plane, R
- geodesic distance [10]

.

nally we can also treat the matrix as a simple one dimen-
sional vector and apply directly the L1 norm.

Fig. 8 illustrates the performance w.r.t. the selected met-
ric. Brownian descriptor not only outperforms the original
covariance in every case, but also achieves the good perfor-
mance even while using the L1 norm. This is the central
point which opens new directions for future research. Until
now, the covariance descriptor was often avoided for em-
ploying to retrieval and to recognition tasks due to following
limitations. First, the geodesic metric is computationally
heavy. Second, learning on manifold is difficult and usually
produces models which are over-fitted to training data. But
now we can utilize this Brownian descriptor in combination
with common classifiers employed in a Euclidean space.
i-LIDS [25] This evaluation dataset has been extracted au-
tomatically. It contains 476 images with 119 individuals
registered by two different cameras. This dataset is very
challenging due to many occlusions (often only the top part
of the person is visible). We reproduce the same experimen-
tal settings as [4] and the results are shown in fig. 9. We can
notice that our descriptor again outperforms the regular co-

variance descriptor. It clearly shows the advantage of our
Brownian matrix over the classical covariance descriptor.

5.3. Descriptor complexity

Extraction complexity Time and memory complexity is
the same as for computing the classical covariance matrix
[22]. The computation complexity is O(n2p). For fast co-
variance computation, similarly to [22], we can construct
integral images (integral images need to be extracted for
each ā in equation 7).
Matching complexity Instead of using geodesic distance,
we can employ directly Euclidean metric that makes the de-
scriptor computationally efficient.

6. Conclusion
We proposed Brownian descriptor for the problem of ap-

pearance matching. This new descriptor is based on dis-
tance correlation R2

n, which can measure dependence be-
tween features extracted from an image region. In con-
trast to the classical covariance which measures the degree
of linear relationship between features, the distance cor-
relation measures the degree of all kinds of possible rela-
tionships between features. Experiments demonstrate that
R2

n outperforms ρ, as an image descriptor. We also show
that Brownian descriptor can be treated as a point on Eu-
clidean space without relevant loss of the recognition accu-
racy. This makes the descriptor computationally efficient
and useful for real-time systems. In future we plan to ad-
dress various generalizations of this descriptor to different
application domains including object detection and recog-
nition.
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